Advertisement

Antioxidant enzymes and lipid peroxidation in the scalp of patients with alopecia areata

      Abstract

      Alopecia areata (AA) is an autoimmune inflammatory disease. However, little is known about the alterations in lipid peroxidation and antioxidant enzymes in the scalp of patients with AA. Therefore, the aim of this study was to investigate the status of oxidative stress in the scalp of patients with AA. We measured the levels of thiobarbituric acid reactive substances (TBARS) as lipid peroxidation status, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as antioxidant enzymes in the scalp of ten patients with AA and ten control subjects. The levels of TBARS in scalp of patients with AA (3654.1±621.2 nmol/g tissue) were significantly higher than those of controls (1210.2±188.8 nmol/g tissue) (P=0.002). The levels of SOD (134.8±23.8 U/g tissue) and GSH-Px (332.7±66.2 U/g tissue) in scalp of patients with AA were also significantly higher than those of controls (63.2±8.8 U/g tissue, 112.0±18.4 U/g tissue, respectively) (P=0.019, P=0.002, respectively). The mean levels of TBARS, SOD and GSH-Px in early phase of disease were increased 2-fold as compared with late phase of the disease. These results indicate that oxidative status is affected in AA. Lipid peroxidation and antioxidant enzymes may be involved in the pathogenesis of AA. Furthermore, we found high SOD and GSH-Px activities in the scalp of patient with AA. These high levels could not protect the patients against the reactive oxygen species, because lipid peroxidation could not be lowered in AA patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McDonagh A.J.G.
        • Messenger A.G.
        The pathogenesis of alopecia areata.
        Dermatol. Clin. 1996; 14: 661-670
        • Bodemer C.
        • Peuchmaur M.
        • Fraitaig S.
        • Chatenoud L.
        • Brausse N.
        • Prost Y.
        The role of cytotoxic T-cells in chronic alopecia areata.
        J. Invest. Dermatol. 2000; 114: 112-116
        • Madani S.
        • Shapiro J.
        Alopecia areata update.
        J. Am. Acad. Dermatol. 2000; 42: 549-566
        • Duvic M.
        • Nelson A.
        • de Andrade M.
        The genetics of alopecia areata.
        Clin. Dermatol. 2001; 19: 135-139
        • Lontz W.
        • Sirsjo A.
        • Liu W.
        • Lindberg M.
        • Rollman O.
        • Torma H.
        Increased mRNA expression of manganese superoxide dismutase in psoriasis skin lesions and in cultured human keratinocytes exposed to IL-1 beta and TNF-alpha.
        Free Radic. Biol. Med. 1995; 18: 349-355
        • Therond P.
        • Gerbaud P.
        • Dimon S.
        • Anderson W.B.
        • Evain-Broin D.
        • Raynaud F.
        Antioxidant enzymes in psoriatic fibroblasts and erythrocytes.
        J. Invest. Dermatol. 1996; 106: 1325-1328
        • Niwa Y.
        • Kanoh T.
        • Sakane T.
        • Soh H.
        • Kawai S.
        • Miyachi Y.
        Detection of enhanced lipid peroxide levels in patients with inflammatory skin diseases.
        J. Clin. Biochem. Nutr. 1987; 2: 245-251
        • Emerit I.
        Free radicals and aging of the skin.
        EXS. 1992; 62: 328-341
        • Miyachi Y.
        Photoaging from an oxidative standpoint.
        J. Dermatol. Sci. 1995; 9: 79-86
        • Chiou J.F.
        • Hu M.L.
        Elevated lipid peroxidation and disturbed antioxidant enzyme activities in plasma and erythrocytes of patients with uterine cervicitis and myoma.
        Clin. Biochem. 1999; 32: 189-192
        • Omata N.
        • Tsukahara H.
        • Ito S.
        • Ohshima Y.
        • Yasutomi M.
        • Yamada A.
        • Jiang M.
        • Hiraoka M.
        • Nambu M.
        • Deguchi Y.
        • Mayumi M.
        Increased oxidative stress in childhood atopic dermatitis.
        Life Sci. 2001; 69: 223-228
        • Vural P.
        • Canbaz M.
        • Selcuki D.
        Plasma antioxidant defense in actinic keratosis and basal cell carcinoma.
        J. Eur. Acad. Dermatol. Venereol. 1999; 13: 96-101
        • Yan T.
        • Li S.
        • Jiang X.
        • Oberley L.W.
        Altered levels of primary antioxidant enzymes in progeria skin fibroblasts.
        Biochem. Biophys. Res. Commun. 1999; 257: 163-167
        • Thiele J.J.
        • Schroeter C.
        • Hsieh S.N.
        • Podda M.
        • Packer L.
        The antioxidant network of the stratum corneum.
        Curr. Probl. Dermatol. 2001; 29: 26-42
        • Beazley W.D.
        • Gaze D.
        • Panske A.
        • Panzig E.
        • Schallreuter K.U.
        Serum selenium levels and blood glutathione peroxidase activities in vitiligo.
        Br. J. Dermatol. 1999; 141: 301-303
        • Giralt M.
        • Cervallo I.
        • Nogues M.R.
        • Puerto M.A.
        • Ortin F.
        • Argony N.
        • Mallol J.
        Glutathione, glutathione S-transferase and reactive oxygen species of human scalp sebaceous glands in male pattern baldness.
        J. Invest. Dermatol. 1996; 107: 154-158
        • Naziroğlu M.
        • Kökçam I.
        Antioxidants and lipid peroxidation status in the blood of patients with alopecia.
        Cell Biochem. Funct. 2000; 18: 169-173
        • Ohkawa H.
        • Ohishi N.
        • Yugi K.
        Assay for lipid peroxidation in animals tissues by thiobarbuturic acid reactions.
        Anal. Biochem. 1979; 95: 351-358
        • Aydin A.
        • Orhan H.
        • Sayal A.
        • Özata M.
        • Şahin G.
        • Işimer A.
        Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control.
        Clin. Biochem. 2001; 34: 65-70
        • Paglia D.E.
        • Valentine W.N.
        Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase.
        J. Lab. Clin. Med. 1967; 70: 158-159
        • Kalish R.S.
        • Gilhar A.
        The immunology of alopecia areata and potential application to novel therapies.
        Dermatologic Therapy. 2001; 14: 322-328
        • Tobin D.J.
        Morphological analysis of hair follicles in alopecia areata.
        Microsc. Res. Tech. 1997; 38: 443-451
        • Philpott M.P.
        • Sanders D.A.
        • Bowen J.
        • Kealey T.
        Effects of interleukins, colony-stimulating factor and tumour necrosis factor on human hair follicle growth in vitro: a possible role for interleukin-1 and tumour necrosis factor-alpha in alopecia areata.
        Br. J. Dermatol. 1996; 135: 942-948
        • Reid M.B.
        • Li Y.P.
        Cytokines and oxidative signaling in skeletal muscle.
        Acta Physiol. Scand. 2001; 171: 225-232
        • Khan M.F.
        • Wu X.
        • Ansari G.A.
        Anti-malondialdehyde antibodies in MRL+/+ mice treated with trichloroethene and dichloroacetyl chloride: possible role of lipid peroxidation in autoimmunity.
        Toxicol. Appl. Pharmacol. 2001; 170: 88-92
        • Kannan K.
        • Jain S.K.
        Oxidative stress and apoptosis.
        Pathophysiology. 2000; 7: 153-163
        • Kokçam I.
        • Naziroğlu M.
        Antioxidants and lipid peroxidation status in the blood of patients with psoriasis.
        Clin. Chim. Acta. 1999; 289: 23-31