Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture


      UV radiation from sunlight is the most potent environmental risk factor in skin cancer pathogenesis. In the present study the ability of an algal extract to protect against UVA-induced DNA alterations was examined in human skin fibroblasts (1BR-3), human melanocytes (HEMAc) and human intestinal CaCo-2 cells. The protective effects of the proprietary algal extract, which contained a high level of the carotenoid astaxanthin, were compared with synthetic astaxanthin. DNA damage was assessed using the single cell gel electrophoresis or comet assay. In 1BR-3 cells, synthetic astaxanthin prevented UVA-induced DNA damage at all concentrations (10 nM, 100 nM, 10 μM) tested. In addition, the synthetic carotenoid also prevented DNA damage in both the HEMAc and CaCo-2 cells. The algal extract displayed protection against UVA-induced DNA damage when the equivalent of 10 μM astaxanthin was added to all three-cell types, however, at the lower concentrations (10 and 100 nM) no significant protection was evident. There was a 4.6-fold increase in astaxanthin content of CaCo-2 cells exposed to the synthetic compound and a 2.5-fold increase in cells exposed to algal extract. In 1BR-3 cells, exposure to UVA for 2 h resulted in a significant induction of cellular superoxide dismutase (SOD) activity, coupled with a marked decrease in cellular glutathione (GSH) content. However pre-incubation (18 h) with 10 μM of the either the synthetic astaxanthin or the algal extract prevented UVA-induced alterations in SOD activity and GSH content. Similarly, in CaCo-2 cells a significant depletion of GSH was observed following UVA-irradiation which was prevented by simultaneously incubating with 10 μM of either synthetic astaxanthin or the algal extract. SOD activity was unchanged following UVA exposure in the intestinal cell line. This work suggests a role for the algal extract as a potentially beneficial antioxidant.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Martinez J.C.
        • Otley C.C.
        The management of melanoma and nonmelanoma skin cancer: a review for the primary care physician.
        Mayo Clin. Proc. 2001; 76: 1253-1265
        • Setlow R.B.
        • Grist E.
        • Thompson K.
        • Woodhead A.D.
        Wavelengths effective in the induction of malignant melanoma.
        Proc. Natl. Acad. Sci. USA. 1993; 90: 6666-6670
        • England D.R.
        • Armstrong B.K.
        • Kricker A.
        • Fleming C.
        Sunlight and cancer.
        Cancer Causes Control. 1997; 8: 271-283
        • Halliwell B.
        • Gutterige J.M.C.
        Insults on the skin.
        in: Free Radicals in Biology and Medicine. Oxford University Press, New York1998: 530-537
        • Robert C.
        • Muel B.
        • Benoit A.
        • Dubertret L.
        • Sarsin A.
        • Stary A.
        Cell survival and shuttle vector mutagenesis induced by ultra violet A and ultra violet B radiation in a human cell line.
        J. Invest. Dermatol. 1996; 107: 721-728
        • De Leeuw S.M.
        • Smit N.P.M.
        • Van Veldhaven M.
        • Pennings E.M.
        • Pavel S.
        • Simons J.W.I.M.
        • Chothorst A.A.
        Melanin content of cultured human melanocytes and UV-induced cytotoxicity.
        J. Photochem. Photobiol. 2001; 61: 106-113
        • Eller M.S.
        • Ostrom K.
        • Gilchrest B.A.
        DNA damage enhances melanogenesis.
        Proc. Natl. Acad. Sci. USA. 1996; 93: 1087-1092
        • Damian D.L.
        • Barneston R.S.
        • Halliday G.M.
        Effects of low dose ultra violet radiation on in vivo human cutaneous recall responses.
        Australas. J. Dermatol. 2001; 42: 161-167
        • Brimer L.H.
        Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage.
        Mol. Carcinog. 1990; 3: 188-197
        • Kondo S.
        • Mamada A.
        • Yamaguchi J.
        • Fukuro S.
        Protective effect of dl-α-tocopherol on the cytotoxicity of ultraviolet B against human skin fibroblasts in vitro.
        Photodermatol. Photoimmunol. Photomed. 1990; 7: 173-177
        • Greenberg E.R.
        • Baron J.A.
        • Stukel T.A.
        • Stevens M.M.
        • Mandel J.S.
        • Spencer S.K.
        • Elias P.M.
        • Lowe N.
        • Nierenberg D.W.
        • Bayrd G.
        • Vance J.C.
        • Freeman D.H.
        • Clendenning W.E.
        • Kwan T.
        The skin cancer prevention study group. A clinical trial of β-carotene to prevent basal-cell and squamous cell cancers of the skin.
        N. Engl. J. Med. 1990; 323: 789-795
        • Thurnham D.I.
        Carotenoids: functions and fallacies.
        Proc. Nutr. Soc. 1994; 53: 77-87
        • Terao J.
        Antioxidant activity of β-carotene related carotenoids in solution.
        Lipids. 1989; 24: 659-661
        • Miki W.
        Biological functions and activities of animal carotenoids.
        Pure Appl. Chem. 1991; 63: 141-146
        • Palozza P.
        • Krinsky N.I.
        Astaxanthin and cantaxanthin are potent antioxidants in a membrane model.
        Arch. Biochem. Biophys. 1992; 292: 184-187
        • Lim B.P.
        • Nagao A.
        • Terao J.
        • Tanaka K.
        • Suzuki T.
        • Takama K.
        Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation.
        Biochem. Biophys. Acta. 1992; 1126: 178-184
        • Goto S.
        • Kogure K.
        • Abe K.
        • Kimata Y.
        • Kitahama K.
        • Yamashita E.
        • Terada H.
        Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin.
        Biochem. Biophys. Acta. 2001; 1512: 251-258
        • Ciszak E.
        • Cody V.
        • Luft J.
        • Kempton R.J.
        • Kesler B.S.
        Flavonoid conformational analysis: comparison of the molecular structures of (Z)-4,4′6-triacetoaurone and (Z)-3′,5′-dibromo-2′,4,4′6-tetrahydroxyaurone monohydrate by crystallographic and molecular orbital methods.
        J. Mol. Std. Theochem. 1991; 251: 345-357
        • Kogure K.
        • Goto S.
        • Abe K.
        • Ohiwa C.
        • Akasu M.
        • Terada H.
        Potent antiperoxidation activity of the bisbenzylisoquinoline alkaloid cepharanthine: the amine moiety is responsible for its pH-dependent radical scavenge activity.
        Biochem. Biophys. Acta. 1999; 1426: 133-142
        • Naguib Y.M.A.
        Antioxidant activities of astaxanthin and related carotenoids.
        J. Agric. Food Chem. 2000; 48: 1150-1154
        • Lawlor S.M.
        • O'Brien N.M.
        Astaxanthin: antioxidant effects in chicken embryo fibroblasts.
        Nutr. Res. 1995; 15: 1695-1704
        • O'Connor I.
        • O'Brien N.M.
        Modulation of UVA-induced oxidative stress by β-carotene, lutein and astaxanthin in cultured fibroblasts.
        J. Dermatol. Sci. 1998; 16: 226-230
        • Schoefs B.
        • Rmiki N.-E.
        • Rachadi J.
        • Lemoine Y.
        Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydrolase and an active synthesis of fatty acids.
        FEBS Letts. 2001; 500: 125-128
        • Magnus K.
        The Nordic profile of skin cancer incidence: a comparitive epidemiological study of the three main types of skin cancer.
        Int. J. Cancer. 1991; 47: 12-19
        • Mowles J.M.
        Mycoplasma detection.
        in: Pollard J.W. Walker J.M. Methods in Molecular Biology. Animal Cell Culture. V. Humana Press, New Jersey1990: 65-74
        • Woods J.A.
        • O'Leary K.A.
        • McCarthy R.P.
        • O'Brien N.M.
        Preservation of comet assay slides: comparison with fresh slides.
        Mutat. Res. 1999; 429: 181-187
        • Misra H.
        • Fridovich I.
        Superoxide dismutase: a photochemical augmentation assay.
        Arch. Biochem. Biophys. 1977; 181: 308-312
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with Folin–Phenol reagents.
        J. Biol. Chem. 1951; 193: 267-275
        • Hissin P.J.
        • Hilf R.
        A fluorometric method for determination of oxidized and reduced glutathione in tissues.
        Anal. Biochem. 1976; 74: 214-226
        • Nells H.J.C.F.
        • De Leenheer A.P.
        Isocratic nonaqueous reversed-phase liquid chromatography of carotenoids.
        Anal. Chem. 1983; 55: 270-275
        • Marrot L.
        • Belaidi J.P.
        • Meunier J.R.
        • Perez P.
        • Agapakis-Causse C.
        The human melanocyte as a particular target for UVA radiation and an endpoint for photoprotection assessment.
        Photochem. Photobiol. 1999; 69: 686-693
        • Alapetite C.
        • Wachter T.
        • Sage E.
        • Moustacchi E.
        Use of the alkaline comet assay to detect DNA repair deficiencies in human fibroblasts exposed to UVC, UVB, UVA and gamma rays.
        Int. J. Radiat. Biol. 1996; 69: 359-369
        • Marrot L.
        • Belaidi J.P.
        • Chaubo C.
        • Meunier J.R.
        • Perez P.
        • Agapakis-Causse C.
        An in vitro strategy to evaluate the phototoxicity of solar UV at the molecular and cellular level: application to photo-protection assessment.
        Eur. J. Dermatol. 1998; 8: 403-412
        • Didier C.
        • Pouget J.-P.
        • Cadet J.
        • Favier A.
        • Beani J.-C.
        • Richard M.-J.
        Modulation of endogenous levels of thioredoxin in human skin fibroblasts preventing damaging effect of ultraviolet A radiation.
        Free. Rad. Biol. Med. 2001; 30: 537-546
        • Rojas E.
        • Lopez M.C.
        • Valerde M.
        Single cell gel electrophoresis assay: methodology and application.
        J. Chromatogr. B. 1999; 722: 225-254
        • Lehmann J.
        • Pollet D.
        • Peker S.
        • Steinkrus V.
        • Hoppe U.
        Kinetics of DNA strand breaks and protection by antioxidants in UVA- or UVB-irradiated HaCaT keratinocytes using the single cell gel electrophoresis assay.
        Mutat. Res. 1998; 407: 97-108
        • Schmitz S.
        • Garbe C.
        • Jimbow K.
        • Wulff A.
        • Daniels H.
        • Eberle J.
        • Orfanos C.E.
        Photodynamic action of ultraviolet A: induction of hydroperoxides: recent results.
        Cancer Res. 1995; 139: 43-55
        • Kochevar I.E.
        Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus.
        J. Invest. Dermatol. 1985; 85: 140s-143s
        • Carbonare D.M.
        • Pathak M.A.
        Skin photosensitizing agents and the role of reactive oxygen species in photoageing.
        J. Photochem. Photobiol. B. 1992; 14: 105-124
        • Gonzalez S.
        • Pathak M.A.
        Inhibition of ultraviolet-induced formation of reactive oxygen species, lipid peroxidation, erythema and skin photosensitization by polypodium leuctomos.
        Photodermatol. Photoimmunol. Photomed. 1996; 12: 45-56
        • De La Rochette A.
        • Silva E.
        • Birlouez-Aragon I.
        • Mancini M.
        • Edwards A.M.
        • Morliere P.
        Riboflavin photodegradation and photosensitizing effects are highly dependent on oxygen and ascorbate concentrations.
        Photochem. Photobiol. 2000; 72: 815-820
        • Poswig A.
        • Wenk J.
        • Brenneisen P.
        • Wlaschek M.
        • Hommel C.
        • Quel G.
        • Faisst K.
        • Dissemond J.
        • Briviba K.
        • Kreig T.
        • Scharffetter-Kochanek K.
        Adaptive antioxidant response of manganase-superoxide dismutase following repetitive UVA irradiation.
        J. Invest. Dermatol. 1999; 112: 13-18
        • Meewes C.
        • Brenneisen P.
        • Wenk J.
        • Kuhr L.
        • Ma W.
        • Alikoski J.
        • Poswig A.
        • Kreig T.
        • Scharffetter-Kochanek K.
        Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity.
        Free. Rad. Biol. Med. 2001; 30: 238-247
        • Erden I.M.
        • Kahraman A.
        • Koken T.
        Beneficial effects of quercetin on oxidative stress induced by ultraviolet A.
        Exp. Clin. Dermatol. 2001; 26: 536-539
        • Wheeler L.A.
        • Aswad A.
        • Connor M.J.
        • Lowe N.
        Depletion of cutaneous glutathione and the induction of inflammation by 8-methoxypsoralen plus UVA radiation.
        J. Invest. Dermatol. 1986; 87: 658-662
        • Leccia M.T.
        • Yaar M.
        • Allen N.
        • Gleason M.
        • Gilvchrest B.A.
        Solar stimulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts.
        Exp. Dermatol. 2001; 10: 272-279