Advertisement
Research Article| Volume 30, ISSUE 3, P185-194, December 2002

Download started.

Ok

Expression of functional Toll-like receptor 2 on human epidermal keratinocytes

      Abstract

      Epidermal keratinocytes secrete cytokines, chemokines, and anti-microbial peptides in response to various microbial pathogens and their components including lipopolysaccharide (LPS). To identify the receptor(s) involved in the anti-microbial responses of epidermal keratinocytes, we analyzed expression of CD14, Toll-like receptor 2 (TLR2), and TLR4 on cultured normal human epidermal keratinocytes (NHEK). Although CD14 and TLR2 mRNA were expressed in cultured NHEK, only TLR2 was detected on the cell surface. Cultured NHEK did not express TLR4 mRNA or protein. Commercial LPS preparations could stimulate epidermal keratinocytes to produce β-defensin-2 and IL-8, and the LPS response was inhibited with mAb specific for TLR2, but not for CD14 or TLR4. Repurified LPS and lipid A did not stimulate epidermal keratinocytes, whereas peptidoglycan (PGN) from Gram-positive bacteria and yeast cell wall particle induced β-defensin-2 and IL-8 production. Thus, cultured NHEK express functional TLR2, but not CD14 or TLR4, and the “LPS” response of epidermal keratinocytes shown in the previous studies might be mediated by TLR2-dependent recognition of non-LPS bacterial components contaminating in commercial LPS preparations. In the normal human skin, however, epidermal keratinocytes expressed both TLR2 and TLR4. Because TLR4 was induced in epidermal keratinocytes by in vitro stimulation with PGN from Gram-positive bacteria, constitutive expression of TLR4 on epidermal keratinocytes in vivo might also be induced by continuous recognition of the resident skin flora containing Gram-positive bacteria through TLR2.

      Keywords

      Abbreviations:

      NHEK, normal human epidermal keratinocytes (), HBD2, human β-defensin-2 (), TLR, Toll-like receptor (), PRR, pattern recognition receptor (), PAMP, pathogen-associated molecular pattern (), PGN, peptidoglycan ()
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chu A.C.
        • Morris J.F.
        The keratinocyte.
        in: Bos J.D. Skin Immune System (SIS). CRC Press, Boca Raton, FL1997: 43-57
        • Rietschel E.T.
        • Kirikae T.
        • Schade F.U.
        • Mamat U.
        • Schmidt G.
        • Loppnow H.
        • Ulmer A.J.
        • Zähringer U.
        • Seydel U.
        • Di Padova F.
        • Schreier M.
        • Brade H.
        Bacterial endotoxin: molecular relationships of structure to activity and function.
        FASEB J. 1994; 8: 217-225
        • Köck A.
        • Schwarz T.
        • Kirnbauer R.
        • Urbanski A.
        • Perry P.
        • Ansel J.C.
        • Lugar T.A.
        Human keratinocytes are a source for tumor necrosis factor α: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light.
        J. Exp. Med. 1990; 172: 1609-1614
        • Derocq J.-M.
        • Segui M.
        • Poinot-Chazel C.
        • Minty A.
        • Caput D.
        • Ferrara P.
        • Casellas P.
        Inteleukin-13 stimulates interleukin-6 production by human keratinocytes: similarity with interleukin-4.
        FEBS Lett. 1994; 343: 32-36
        • Wilmer J.L.
        • Burleson F.G.
        • Kayama F.
        • Kanno J.
        • Luster M.I.
        Cytokine induction in human epidermal keratinocytes exposed to contact irritants and its relation to chemical-induced inflammation in mouse skin.
        J. Invest. Dermatol. 1994; 102: 915-922
        • Harder J.
        • Bartels J.
        • Christophers E.
        • Schröder J.-M.
        A peptide antibiotic from human skin.
        Nature. 1997; 387: 861
        • Schröder J.-M.
        • Harder J.
        Human beta-defensin-2.
        Int. J. Biochem. Cell Biol. 1999; 31: 645-651
        • Schmid P.
        • Grenet O.
        • Medina J.
        • Chibout S.-D.
        • Osborne C.
        • Cox D.A.
        An intrinsic antibiotic mechanism in wounds and tissue-engineered skin.
        J. Invest. Dermatol. 2001; 116: 471-472
        • Seo S.J.
        • Ahn S.W.
        • Hong C.K.
        • Ro B.I.
        Expressions of β-defensins in human keratinocyte cell lines.
        J. Dermatol. Sci. 2001; 27: 183-191
        • Janeway Jr., C.A.
        Approaching the asymptote? Evolution and revolution in immunology.
        Cold. Spring Harb. Symp. Quant. Biol. 1989; 54: 1-13
        • Medzhitov R.
        • Janeway Jr., C.A.
        Innate immunity: the virtues of a nonclonal system of recognition.
        Cell. 1997; 91: 295-298
        • Pugin J.
        • Heumann D.
        • Tomasz A.
        • Kravchenko V.
        • Akamatsu Y.
        • Nishijimi M.
        • Glauser M.-P.
        • Tobias P.S.
        • Ulecitch R.J.
        CD14 is a pattern recognition receptor.
        Immunity. 1994; 1: 509-516
        • Schumann R.R.
        • Leong S.R.
        • Flaggs G.W.
        • Gray P.W.
        • Wright S.D.
        • Mathison J.C.
        • Tobias P.S.
        • Ulevitch R.J.
        Structure and function of lipopolysaccharide binding protein.
        Science. 1990; 249: 1429-1431
        • Ulevitch R.J.
        • Tobias P.S.
        Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin.
        Annu. Rev. Immunol. 1995; 13: 437-457
        • Wright S.D.
        • Ramos R.A.
        • Tobias P.S.
        • Ulevitch R.J.
        • Mathison J.C.
        CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein.
        Science. 1990; 249: 1431-1433
        • Aderem A.
        • Ulevitch R.J.
        Toll-like receptors in the induction of the innate immune response.
        Nature. 2000; 406: 782-787
        • Akira S.
        • Takeda K.
        • Kaisho T.
        Toll-like receptors: critical proteins linking innate and acquired immunity.
        Nature Immunol. 2001; 2: 675-680
        • Medzhitov R.
        Toll-like receptors and innate immunity.
        Nature Rev. Immunol. 2001; 1: 135-145
        • Hoshino K.
        • Takeuchi O.
        • Kawai T.
        • Sanjo H.
        • Ogawa T.
        • Takeda Y.
        • Takeda K.
        • Akira S.
        Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product.
        J. Immunol. 1999; 162: 3749-3752
        • Poltorak A.
        • He X.
        • Smirnova I.
        • Liu M.-Y.
        • Van Huffel C.
        • Du X.
        • Birdwell D.
        • Alejos E.
        • Silva M.
        • Galanos C.
        • Freudenberg M.
        • Ricciardi-Castagnoli P.
        • Layton B.
        • Beutler B.
        Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene.
        Science. 1998; 282: 2085-2088
        • Qureshi S.T.
        • Larivière G.
        • Leveque G.
        • Clermont S.
        • Moore K.J.
        • Gros P.
        • Malo D.
        Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4).
        J. Exp. Med. 1999; 189: 615-625
        • Shimazu R.
        • Akashi S.
        • Ogata H.
        • Nagai Y.
        • Fukudome K.
        • Miyake K.
        • Kimoto M.
        MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4.
        J. Exp. Med. 1999; 189: 1777-1782
        • Schwandner R.
        • Dziarski R.
        • Wesche H.
        • Rothe M.
        • Kirschning C.J.
        Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2.
        J. Biol. Chem. 1999; 274: 17406-17409
        • Yoshimura A.
        • Lien E.
        • Ingalls R.R.
        • Tuomanen E.
        • Dziarski R.
        • Golenbock D.
        Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2.
        J. Immunol. 1999; 163: 1-5
        • Hajjar A.M.
        • O'Mahony D.S.
        • Ozinsky A.
        • Underhill D.M.
        • Aderem A.
        • Klebanoff S.J.
        • Wilson C.B.
        Functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin.
        J. Immunol. 2001; 166: 15-19
        • Aliprantis A.O.
        • Yang R.-B.
        • Mark M.R.
        • Suggett S.
        • Devaux B.
        • Radolf J.D.
        • Klimpel G.R.
        • Godowski P.
        • Zychlinsky A.
        Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2.
        Science. 1999; 285: 736-739
        • Brightbill H.D.
        • Libraty D.H.
        • Krutzik S.R.
        • Yang R.-B.
        • Belisle J.T.
        • Bleharski J.R.
        • Maitland M.
        • Norgard M.V.
        • Plevy S.E.
        • Smale S.T.
        • Brennan P.J.
        • Bloom B.R.
        • Godowski P.J.
        • Modlin R.L.
        Host defence mechanisms triggered by microbial lipoproteins through Toll-like receptors.
        Science. 1999; 285: 732-736
        • Hirschfeld M.
        • Kirschning C.J.
        • Schwandner R.
        • Wesche H.
        • Weis J.H.
        • Wooten R.M.
        • Weis J.J.
        Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by Toll-like receptor 2.
        J. Immunol. 1999; 163: 2282-2386
        • Lien E.
        • Sellati T.J.
        • Yoshimura A.
        • Flo T.H.
        • Rawadi G.
        • Finberg R.W.
        • Carroll J.D.
        • Espevik T.
        • Ingalls R.R.
        • Radolf J.D.
        • Golenbock D.T.
        Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products.
        J. Biol. Chem. 1999; 274: 33419-33425
        • Underhill D.M.
        • Ozinsky A.
        • Hajjar A.M.
        • Stevens A.
        • Wilson C.B.
        • Bassetti M.
        • Aderem A.
        The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens.
        Nature. 1999; 401: 811-815
        • Means T.K.
        • Lien E.
        • Yoshimura A.
        • Wang S.
        • Golenbock D.T.
        • Fenton M.J.
        The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors.
        J. Immunol. 1999; 163: 6748-6755
        • Underhill D.M.
        • Ozinsky A.
        • Smith K.D.
        • Aderem A.
        Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages.
        Proc. Natl. Acad. Sci. USA. 1999; 96: 14459-14463
        • Campos M.A.S.
        • Almeida I.C.
        • Takeuchi O.
        • Akira S.
        • Valente E.P.
        • Procópio D.O.
        • Travassos L.R.
        • Smith J.A.
        • Golenbock D.T.
        • Gazzinelli R.T.
        Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite.
        J. Immunol. 2001; 167: 416-423
        • Hirschfeld M.
        • Ma Y.
        • Weis J.H.
        • Vogel S.N.
        • Weis J.J.
        Repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2.
        J. Immunol. 2000; 165: 618-622
        • Tapping R.I.
        • Akashi S.
        • Miyake K.
        • Godowski P.J.
        • Tobias P.S.
        Toll-like receptor 4, but not Toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides.
        J. Immunol. 2000; 165: 5780-5787
        • Alexopoulou L.
        • Holt A.C.
        • Medzhitov R.
        • Flavell R.A.
        Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3.
        Nature. 2001; 413: 732-738
        • Hayashi F.
        • Smith K.D.
        • Ozinsky A.
        • Hawn T.R.
        • Yi E.C.
        • Goodlett D.R.
        • Eng J.K.
        • Akira S.
        • Underhill D.M.
        • Aderem A.
        The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5.
        Nature. 2001; 410: 1099-1103
        • Hemmi H.
        • Takeuchi O.
        • Kawai T.
        • Kaisho T.
        • Sato S.
        • Sanjo H.
        • Matsumoto M.
        • Hoshino K.
        • Wagner H.
        • Takeda K.
        • Akira S.
        A Toll-like receptor recognizes bacterial DNA.
        Nature. 2000; 408: 740-745
        • Bulut Y.
        • Faure E.
        • Thomas L.
        • Equils O.
        • Arditi M.
        Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling.
        J. Immunol. 2001; 167: 987-994
        • Ozinsky A.
        • Underhill D.M.
        • Fontenot J.D.
        • Hajjar A.M.
        • Smith K.D.
        • Wilson C.B.
        • Schroeder L.
        • Aderem A.
        The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors.
        Proc. Natl. Acad. Sci. USA. 2000; 97: 13766-13771
        • Wyllie D.H.
        • Kiss-Toth E.
        • Visintin A.
        • Smith S.C.
        • Boussouf S.
        • Segal D.M.
        • Duff G.W.
        • Dower S.K.
        Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses.
        J. Immunol. 2000; 165: 7125-7132
        • Cario E.
        • Rosenberg I.M.
        • Brandwein S.L.
        • Beck P.L.
        • Reinecker H.-C.
        • Podolsky D.K.
        Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors.
        J. Immunol. 2000; 164: 966-972
        • Schilling J.D.
        • Mulvey M.A.
        • Vincent C.D.
        • Lorenz R.G.
        • Hultgren S.J.
        Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism.
        J. Immunol. 2001; 166: 1148-1155
        • Kawai K.
        • Suzuki H.
        • Tomiyama K.
        • Minagawa M.
        • Mak T.W.
        • Ohashi P.S.
        Requirement of the IL-2 receptor β chain for the development of Vγ3 dendritic epidermal T cells.
        J. Invest. Dermatol. 1998; 110: 961-965
        • Zhang F.X.
        • Kirschning C.J.
        • Mancinelli R.
        • Xu X.-P.
        • Jin Y.
        • Faure E.
        • Mantovani A.
        • Rothe M.
        • Muzio M.
        • Arditi M.
        Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes.
        J. Biol. Chem. 1999; 274: 7611-7614
        • Hunyadi J.
        • Simon Jr., M.
        • Kenderessy A.S.
        • Dobozy A.
        Expression of monocyte/macrophage markers (CD13, CD14, CD68) on human keratinocytes in healthy and diseased skin.
        J. Dermatol. 1993; 20: 341-345
        • Chiller K.
        • Selkin B.A.
        • Murakawa G.J.
        Skin microflora and bacterial infections of the skin.
        J. Invest. Dermatol. Symp. Proc. 2001; 6: 170-174
        • Faure E.
        • Thomas L.
        • Xu H.
        • Medvedev A.E.
        • Equils O.
        • Arditi M.
        Bacterial lipopolysaccharide and IFN-γ induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-κB activation.
        J. Immunol. 2001; 166: 2018-2024
        • Franz S.
        • Kobzik L.
        • Kim Y.-D.
        • Fukazawa R.
        • Medzhitov R.
        • Lee R.T.
        • Kelly R.A.
        Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium.
        J. Clin. Invest. 1999; 104: 271-280
        • Muzio M.
        • Bosisio D.
        • Polentarutti N.
        • D'amico G.
        • Stoppacciaro A.
        • Mancinelli R.
        • van't Veer C.
        • Penton-Rol G.
        • Ruco L.P.
        • Allavena P.
        • Mantovani A.
        Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells.
        J. Immunol. 2000; 164: 5998-6004
        • Kreutz M.
        • Ackermann U.
        • Hauschildt S.
        • Krause S.W.
        • Riedel D.
        • Bessler W.
        • Andreesen R.
        A comparative analysis of cytokine production and tolerance induction by bacterial lipopeptides, lipopolysaccharides and Staphyloccocus aureus in human monocytes.
        Immunology. 1997; 92: 396-401
        • Lehner M.D.
        • Morath S.
        • Michelsen K.S.
        • Schumann R.R.
        • Hartung T.
        Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators.
        J. Immunol. 2001; 166: 5161-5167
        • Sato S.
        • Nomura F.
        • Kawai T.
        • Takeuchi O.
        • Mühlradt P.F.
        • Takeda K.
        • Akira S.
        Synergy and cross-tolerance between Toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways.
        J. Immunol. 2000; 165: 7096-7101
        • Hunyadi J.
        • Simon Jr., M.
        • Kenderessy A.S.
        • Olàh J.
        • Dobozy A.
        Expression of adhesion molecules and monocyte markers on cultured human keratinocytes.
        Eur. J. Dermatol. 1992; 2: 50-55
        • Vega-Diaz B.
        • Michel S.
        Expression of Toll-like receptors in human keratinocytes.
        J. Invest. Dermatol. 2001; 117: 458
        • Song P.
        • Park Y.
        • Abraham T.
        • Harten B.
        • Zivony A.
        • Armstrong C.
        • Ansel J.
        The expression of functional CD14 and Toll-like receptors on human keratinocytes.
        J. Invest. Dermatol. 2001; 117: 438
        • Fearon D.T.
        • Locksley R.M.
        The instructive role of innate immunity in the acquired immune response.
        Science. 1996; 272: 50-54
        • Hoffmann J.A.
        • Kafatos F.C.
        • Janeway Jr., C.A.
        • Ezekowitz R.A.B.
        Phylogenetic perspectives in innate immunity.
        Science. 1999; 284: 1313-1318
        • Schnare M.
        • Barton G.M.
        • Holt A.C.
        • Takeda K.
        • Akira S.
        • Medzhitov R.
        Toll-like receptors control activation of adaptive immune responses.
        Nature Immunol. 2001; 2: 947-950
        • Yang D.
        • Chertov O.
        • Bykovskaia S.N.
        • Chen Q.
        • Buffo M.J.
        • Shogan J.
        • Anderson M.
        • Schröder J.M.
        • Wang J.M.
        • Howard O.M.Z.
        • Oppenheim J.J.
        β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6.
        Science. 1999; 286: 525-528