Advertisement
Research Article| Volume 30, ISSUE 3, P205-214, December 2002

Download started.

Ok

Expression and regulation of glutathione S-transferase P1-1 in cultured human epidermal cells

      Abstract

      Six families of glutathione S-transferases (GSTs), which play an important role in cellular detoxification, are identified in human cells. We report that human keratinocytes and melanocytes express significant levels of GST activity, for which GSTP1-1 is mainly responsible. But, in contrast to previous reports that GSTP1-1 level increases in skin tumor tissues, GSTP1-1 expression does not increase in transformed keratinocytes and melanocytes in culture. Although the human GSTP1 gene carries in its 5′-flanking region multiple copies of the antioxidant response element (ARE), no increase in GSTP1-1 expression was observed after treatment of human keratinocytes (HaCaT) with ARE-mediated inducers. ARE is a cis-acting DNA element and stimulates the transcription of many genes. While studies suggest that an NF-κB binding site in the promoter region might suppress the ARE function, such a mechanism does not appear to exist in HaCaT cells. Moreover, although ras has been shown to stimulate the expression of human GSTP1-1, the effect of c-Ha-ras on GSTP1-1 expression in HaCaT cells appears limited.

      Keywords

      Abbreviations:

      ARE, antioxidant response element (), CDNB, 1-chloro-2,4-dinitrobenzene (), GCS, γ-glutamylcysteine synthetase (), QR-1, quinone reductase-1 (), GSH, glutathione (), GST, glutathione S-transferase (), NHEK, normal human epidermal keratinocyte (), NHM, normal human melanocyte (), SF, 1-isothiocyanato-(4R,S)-(methylsulfinyl)butane(sulforaphane) (), SS, sulfasalazine (), TBHQ, tert-butylhydroquinone (), PDTC, pyrrolidine dithiocarbamate ()
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hayes J.D.
        • Pulford D.J.
        The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance.
        Crit. Rev. Biochem. Mol. Biol. 1995; 30: 445-600
        • Whalen R.
        • Boyer T.D.
        Human glutathione S-transferases.
        Semin. Liver. Dis. 1998; 18: 345-358
        • Henderson C.J.
        • Smith A.G.
        • Ure J.
        • Brown K.
        • Bacon E.J.
        • Wolf C.R.
        Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 5275-5280
        • Blacker K.L.
        • Olson E.
        • Vessey D.A.
        • Boyer T.D.
        Characterization of glutathione S-transferase in cultured human keratinocytes.
        J. Invest. Dermatol. 1991; 97: 442-446
        • Marshall S.E.
        • Bordea C.
        • Haldar N.A.
        • Mullighan C.G.
        • Wojnarowska F.
        • Morris P.J.
        • Welsh K.I.
        Glutathione S-transferase polymorphisms and skin cancer after renal transplantation.
        Kidney Int. 2000; 58: 2186-2193
        • Shimizu K.
        • Toriyama F.
        • Yoshida H.
        The expression of placental-type glutathione S-transferase (GST-pi) in human cutaneous squamous cell carcinoma and normal human skin.
        Virchows. Arch. 1995; 425: 589-592
        • Hanada K.
        • Ishikawa H.
        • Tamai K.
        • Hashimoto I.
        • Sato K.
        Expression of glutathione S-transferase-pi in malignant skin tumors.
        J. Dermatol. Sci. 1991; 2: 18-23
        • Shimizu K.
        • Toriyama F.
        • Zhang H.M.
        • Yoshida H.
        The expression of placental-type glutathione S-transferase (GST-pi) in human cutaneous carcinoma in situ, that is, actinic keratosis and Bowen's disease, compared with normal human skin.
        Carcinog. 1995; 16: 2327-2330
        • Morrow C.S.
        • Goldsmith M.E.
        • Cowan K.H.
        Regulation of human glutathione S-transferase π gene transcription: influence of 5′-flanking sequences and trans-activating factors which recognize AP-1-binding sites.
        Gene. 1990; 88: 215-225
        • Moffat G.J.
        • McLaren A.W.
        • Wolf C.R.
        Functional characterization of the transcription silencer element located within the human pi class glutathione S-transferase promoter.
        J. Biol. Chem. 1996; 271: 20740-20747
        • Prestera T.
        • Holtzclaw W.D.
        • Zhang Y.
        • Talalay P.
        Chemical and molecular regulation of enzymes that detoxify carcinogens.
        Proc. Natl. Acad. Sci. USA. 1993; 90: 2965-2969
        • Mulcahy R.T.
        • Wartman M.A.
        • Bailey H.H.
        • Gipp J.J.
        Constitutive and β-naphthoflavone-induced expression of the human γ-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence.
        J. Biol. Chem. 1997; 272: 7445-7454
        • Prestera T.
        • Talalay P.
        • Alam J.
        • Ahn Y.I.
        • Lee P.J.
        • Choi A.M.K.
        Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE).
        Mol. Med. 1995; 1: 827-837
        • Boukamp P.
        • Petrussevska R.T.
        • Breitkreutz D.
        • Hornung J.
        • Markham A.
        • Fusenig N.E.
        Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line.
        J. Cell. Biol. 1988; 106: 761-771
        • Boukamp P.
        • Stanbridge E.J.
        • Foo D.Y.
        • Cerutti P.A.
        • Fusenig N.E.
        c-Ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy.
        Cancer Res. 1990; 50: 2840-2847
        • Swope V.B.
        • Medrano E.E.
        • Smalara D.
        • Abdel-Malek Z.A.
        Long-term proliferation of human melanocytes is supported by the physiologic mitogens α-melanotropin, endothelin-1, and basic fibroblast growth factor.
        Exp. Cell Res. 1995; 217: 453-459
        • Richie J.P.
        • Skowronski L.
        • Abraham P.
        • Leutzingerm Y.
        Blood glutathione concentrations in a large-scale human study.
        Clin. Chem. 1996; 42: 64-70
        • Ye L.
        • Zhang Y.
        Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes.
        Carcinog. 2001; 22: 1987-1992
        • Nardi G.
        • Cipollaro M.
        Assay of γ-glutamylcysteine synthetase and glutathione synthetase in erythrocytes by high-performance liquid chromatography with fluorimetric detection.
        J. Chromatogr. 1990; 530: 122-128
        • Bailey H.H.
        • Gipp J.J.
        • Ripple M.
        • Wilding G.
        • Mulcahy R.T.
        Increase in γ-glutamylcysteine synthetase activity and steady-state messenger RNA levels in melphalan-resistant DU-145 human prostate carcinoma cells expressing elevated glutathione levels.
        Cancer Res. 1992; 52: 5115-5118
        • Zhang Y.
        Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanates.
        Carcinog. 2001; 22: 425-431
        • Fields W.R.
        • Li Y.
        • Townsend A.J.
        Protection by transfected glutathione S-transferase isozyme against carcinogen-induced alkylation of cellular macromolecules in human MCF-7 cells.
        Carcinog. 1994; 15: 1155-1160
        • Meyer D.J.
        • Coles B.
        • Pemble S.E.
        • Gilmore K.S.
        • Fraser G.M.
        • Ketterer B.
        Theta, a new class of glutathione transferases purified from rat and man.
        Biochem. J. 1991; 274: 409-414
        • Harris J.M.
        • Meyer D.J.
        • Coles B.
        • Ketterer B.
        A novel glutathione transferase (13-13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes.
        Biochem. J. 1991; 278: 137-141
        • Jemth P.
        • Stenberg G.
        • Chaga G.
        • Mannervik B.
        Heterologous expression, purification and characterization of rat class theta glutathione transferase T2-2.
        Biochem. J. 1996; 316: 131-136
        • Board P.G.
        • Baker R.T.
        • Chelvanayagam G.
        • Jermiin L.S.
        Zeta, a novel class of glutathione transferases in a range of species from plants to humans.
        Biochem. J. 1997; 328: 929-935
        • Mulder T.P.
        • Manni J.J.
        • Roelofs H.M.
        • Peters W.H.
        • Wiersma A.
        Glutathione S-transferase and glutathione in human head and neck cancer.
        Carcinog. 1995; 16: 619-624
      1. Moral A, Palou J, Lafuente A, Molina R, Piulachs J, Castel T, Trias M, MMM Group. Immunohistochemical study of alpha, mu and pi class glutathione S-transferase expression in malignant melanoma. Br. J. Dermatol. 1997; 136:345–50.

        • Zhu M.
        • Fahl W.E.
        Development of a green fluorescent protein microplate assay for the screening of chemopreventive agents.
        Anal. Biochem. 2000; 287: 210-217
        • Schreck R.
        • Meier B.
        • Männel D.N.
        • Dröge W.
        • Baeuerle P.A.
        Dithiocarbamates as potent inhibitors of nuclear factor kB activation in intact cells.
        J. Exp. Med. 1992; 175: 1181-1194
        • Wahl C.
        • Liptay S.
        • Adler G.
        • Schmid R.M.
        Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B.
        J. Clin. Invest. 1998; 101: 1163-1174
        • Weber C.K.
        • Liptay S.
        • Wirth T.
        • Adler G.
        • Schmid R.M.
        Suppression of NF-kB activity by sulfasalazine is mediated by direct inhibition of IkB kinases α and β.
        Gastroenterol. 2000; 119: 1209-1218
        • Husain Z.
        • Yang Q.M.
        • Biswas D.K.
        c-Ha-ras proto-oncogene: amplification and overexposure in UV-B-induced mouse skin papillomas and carcinomas.
        Arch. Dermatol. 1990; 126: 324-330
        • Ananthaswamy N.H.
        • Pierceall W.W.
        Molecular mechanisms of ultraviolet radiation carcinogenesis.
        Photochem. Photobiol. 1990; 52: 1119-1136
        • Burt R.K.
        • Garfield S.
        • Johnson K.
        • Thorgeirsson S.S.
        Transformation of rat liver epithelial cells with v-H-ras or v-raf causes expression of MDR-1, glutathione-S-transferase-P and increased resistance to cytotoxic chemicals.
        Carcinog. 1988; 9: 2329-2332
        • Di Simone D.
        • Galimberti S.
        • Basolo F.
        • Ciardiello F.
        • Petrini M.
        • Scheper R.J.
        c-Ha-ras transfection and expression of MDR-related genes in MCF-10A human breast cell line.
        Anticancer Res. 1997; 17: 3587-3592
        • Miyanishi K.
        • Takayama T.
        • Ohi M.
        • Hayashi T.
        • Nobuoka A.
        • Nakajima T.
        • Takimoto R.
        • Kogawa K.
        • Kato J.
        • Sakamaki S.
        • Niitsu Y.
        Glutathione S-transferase-π overexpression is closely associated with K-ras mutation during human colon carcinogenesis.
        Gastroenterology. 2001; 121: 865-874
        • Lin X.
        • Tascilar M.
        • Lee W.H.
        • Vles W.J.
        • Lee B.H.
        • Veeraswamy R.
        • Asgari K.
        • Freije D.
        • van Rees B.
        • Gage W.R.
        • Bova G.S.
        • Issacs W.B.
        • Brooks J.D.
        • DeWeese T.L.
        • De Marzo A.M.
        • Nelson W.G.
        GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells.
        Am. J. Pathol. 2001; 159: 1815-1826
        • Morrow C.S.
        • Chiu J.
        • Cowan K.H.
        Post-transcriptional control of glutathione S-transferase π gene expression in human breast cancer cells.
        J. Biol. Chem. 1992; 267: 10544-10550
        • Shen H.
        • Ranganathan S.
        • Kuzmich S.
        • Tew K.D.
        Influence of ethacrynic acid on glutathione S-transferase π transcript and protein half-lives in human colon cancer cells.
        Biochem. Pharm. 1995; 50: 1233-1238
        • Shen H.
        • Tamai K.
        • Satoh K.
        • Hatayama I.
        • Tsuchida S.
        • Sato K.
        Modulation of class pi glutathione transferase activity by sulfhydryl modification.
        Arch. Biochem. Biophys. 1991; 286: 178-182
        • Shen H.
        • Tsuchida S.
        • Tamai K.
        • Sato K.
        Identification of cysteine residues involved in disulfide formation in the inactivation of glutathione transferase P-form by hydrogen peroxide.
        Arch. Biochem. Biophys. 1993; 300: 137-141
        • Jaiswal A.K.
        Regulation of genes encoding NAD(P)H:quinone oxidoreductase.
        Free. Rad. Biol. Med. 2000; 29: 254-262
        • Rushmore T.H.
        • Morton M.R.
        • Pickett C.B.
        The antioxidant responsive element: activation by oxidative stress and identification of the DNA consensus sequence required for functional activity.
        J. Biol. Chem. 1991; 266: 11632-11639
        • Itoh K.
        • Chiba T.
        • Takahashi S.
        • Ishii T.
        • Igarashi K.
        • Katoh Y.
        • Oyake T.
        • Hayashi N.
        • Satoh K.
        • Hatayama I.
        • Yamamoto M.
        • Nabeshima Y.-I.
        An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.
        Biochem. Biophys. Res. Commun. 1997; 236: 313-322
        • Itoh K.
        • Wakabayashi N.
        • Katoh Y.
        • Ishii T.
        • Igarashi K.
        • Engel J.D.
        • Yamamoto M.
        Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.
        Genes Dev. 1999; 13: 76-86
        • Primiano T.
        • Sutter T.R.
        • Kensler T.W.
        Antioxidant-inducible genes.
        Adv. Pharm. 1997; 38: 293-327