REVIEW ARTICLE| Volume 38, ISSUE 1, P1-7, April 2005

Download started.


Regulatory roles of sex hormones in cutaneous biology and immunology


      Recent studies have revealed that sex hormones manifest a variety of biological and immunological effects in the skin. Pregnancy, menstruation and the menopause modulate the natural course of psoriasis, indicating a female hormone-induced regulation of skin inflammation. Estrogen in vitro down-regulates the production of the neutrophil, type 1 T cell and macrophage-attracting chemokines, CXCL8, CXCL10, CCL5, by keratinocytes, and suppressesIL-12 production and antigen-presenting capacity while enhancing anti-inflammatory IL-10 production by dendritic cells. These data indicate that estrogen may attenuate inflammation in psoriatic lesions. Estrogen, alone or together with progesterone, prevents or reverses skin atrophy, dryness and wrinkles associated with chronological or photo-aging. Estrogen and progesterone stimulate proliferation of keratinocytes while estrogen suppresses apoptosis and thus prevents epidermal atrophy. Estrogen also enhances collagen synthesis, and estrogen and progesterone suppress collagenolysis by reducing matrix metalloproteinase activity in fibroblasts, thereby maintaining skin thickness. Estrogen maintains skin moisture by increasing acid mucopolysaccharide or hyaluronic acid levels in the dermis. Progesterone increases sebum secretion. Estrogen accelerates cutaneous wound healing stimulating NGF production in macrophages, GM-CSF production in keratinocytes and bFGF and TGF-β1 production in fibroblasts, leading to the enhancement of wound re-innervation, re-epithelialization and granulation tissue formation. In contrast, androgens prolong inflammation, reduce deposition of extracellular matrix in wounds, and reduce the rate of wound healing. Estrogen enhances VEGF production in macrophages, an effect that is antagonized by androgens and which may be related to the development of granuloma pyogenicum during pregnancy. These regulatory effects of sex steroids may be manipulated as therapeutic or prophylactic measures in psoriasis, aging, chronic wounds or granuloma pyogenicum.


      AR (androgen receptor), CBP (CREB-binding protein), E2 (17β-estradiol), ER (estrogen receptor), MIF (macrophage migration inhibitory factor), MMP (matrix metalloproteinase), TIMP (tissue inhibitor of metalloproteinase)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Shah M.G.
        • Maibach H.I.
        Estrogen and skin. An overview.
        Am J Clin Dermatol. 2001; 2: 143-150
        • Gilliver S.C.
        • Wu F.
        • Ashcroft G.S.
        Regulatory roles of androgens in cutaneous wound healing.
        Thromb Haemost. 2003; 90: 978-985
        • Beato M.
        Gene regulation by steroid hormones.
        Cell. 1989; 56: 335-344
        • Paech K.
        • Webb P.
        • Kuiper G.G.
        • Nilsson S.
        • Gustafsson J.
        • Kushner P.J.
        • et al.
        Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites.
        Science. 1997; 277: 1508-1510
        • Razandi M.
        • Pedram A.
        • Greene G.L.
        • Levin E.R.
        Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcport: studies of ERα and ERβ expressed in Chinese hamster ovary cells.
        Mol Endocrinol. 1999; 13: 307-319
        • Kelly M.J.
        • Levin E.R.
        Rapid actions of plasma membrane estrogen receptors.
        Trends Endocrinol Metab. 2001; 12: 152-156
        • Ashcroft G.S.
        • Mills S.J.
        Androgen receptor-mediated inhibition of cutaneous wound healing.
        J Clin Invest. 2002; 110: 615-624
        • Ashcroft G.S.
        • Mills S.J.
        • Lei K.
        • Gibbons L.
        • Jeong M.J.
        • Taniguchi M.
        • et al.
        Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor.
        J Clin Invest. 2003; 111: 1309-1318
        • Im S.
        • Lee E.S.
        • Kim W.
        • Song J.
        • Kim J.
        • Lee M.
        • et al.
        Expression of progesterone receptor in human keratinocytes.
        J Korean Med Sci. 2000; 15: 647-654
        • Kanda N.
        • Watanabe S.
        17β-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting bcl-2 expression.
        J Invest Dermatol. 2003; 121: 1500-1509
        • Papas T.C.
        • Gametchu B.
        • Watson C.S.
        Membrane estrogen receptors identified by multiple antibody labeling and impeded-ligand binding.
        FASEB J. 1995; 9: 404-410
        • Filardo E.J.
        • Quinn J.A.
        • Frackelton Jr., A.R.
        • Bland K.I.
        Estrogen action via the G protein-coupled receptor GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis.
        Mol Endocrinol. 2002; 16: 70-84
        • Ropero A.B.
        • Soria B.
        • Nadal A.
        A nonclassical estrogen membrane receptor triggers rapid differential actions in the endocrine pancreas.
        Mol Endocrinol. 2002; 16: 497-505
        • Bos J.D.
        • de Rie M.A.
        The pathogenesis of psoriasis: immunological facts and speculations.
        Immunol Today. 1999; 20: 40-46
        • Mowad C.M.
        • Margolis D.J.
        • Halpern A.C.
        • Suri B.
        • Synnestvedt M.
        • Guzzo C.A.
        Hormonal influences on women with psoriasis.
        Cutis. 1998; 61: 257-260
        • Swanbeck G.
        • Inerot A.
        • Martinsson T.
        • Wahlstrom J.
        A population genetic study of psoriasis.
        Br J Dermatol. 1994; 131: 32-39
        • Kanda N.
        • Watanabe S.
        17β-estradiol inhibits the production of interferon-induced protein of 10 kDa by human keratinocytes.
        J Invest Dermatol. 2003; 120: 411-419
        • Kanda N.
        • Watanabe S.
        17β-estradiol inhibits the production of RANTES in human keratinocytes.
        J Invest Dermatol. 2003; 120: 420-427
        • Liu H.Y.
        • Buenafe A.C.
        • Matejuk A.
        • Ito A.
        • Zamora A.
        • Dwyer J.
        • et al.
        Estrogen inhibition of EAE involves effects on dendritic cell function.
        J Neurosci Res. 2002; 70: 238-248
        • Correale J.
        • Arias M.
        • Gilmore W.
        Steroid hormone regulation of cytokine secretion by proteolipid protein-specific CD4+ T cell clones isolated from multiple sclerosis patients and normal control subjects.
        J Immunol. 1998; 161: 3365-3374
        • Ito A.
        • Imada K.
        • Sato T.
        • Kubo T.
        • Matsushima K.
        • Mori Y.
        Suppression of interleukin 8 production by progesterone in rabbit uterine cervix.
        Biochem J. 1994; 301: 183-186
        • Kanda N.
        • Watanabe S.
        17β-Estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression.
        J Invest Dermatol. 2004; 123: 319-328
        • Urano R.
        • Sakabe K.
        • Seiki K.
        • Ohkido M.
        Female sex hormone stimulates cultured human keratinocyte proliferation and its RNA- and protein-synthetic activities.
        J Dermatol Sci. 1995; 9: 176-184
        • Savvas M.
        • Bishop J.
        • Laurent G.
        • Watson N.
        • Studd J.
        Type III collagen content in the skin of postmenopausal women receiving oestradiol and testosterone implants.
        Br J Obstet Gynaecol. 1993; 100: 154-156
        • Huber J.
        • Gruber C.
        Immunological and dermatological impact of progesterone.
        Gynecol Endocrinol. 2001; 15: 18-21
        • Saito T.
        • Mizumoto H.
        • Tanaka R.
        • Satohisa S.
        • Adachi K.
        • Horie M.
        • et al.
        Overexpressed progesterone receptor form B inhibit invasive activity suppressing matrix metalloproteinases in endometrial carcinoma cells.
        Cancer Lett. 2004; 25: 237-243
        • Sato T.
        • Ito A.
        • Mori Y.
        • Yamashita K.
        • Hayakawa T.
        • Nagase H.
        Hormonal regulation of collagenolysis in uterine cervical fibroblasts. Modulation of synthesis of procollagenase, prostromelysin and tissue inhibitor of metalloproteinases (TIMP) by progesterone and oestradiol-17 beta.
        Biochem J. 1991; 275: 645-650
        • Raine-Fenning N.J.
        • Brincat M.P.
        • Muscat-Baron Y.
        Skin aging and menopause: implications for treatment.
        Am J Clin Dermatol. 2003; 4: 371-378
        • Bentley J.P.
        • Brenner R.M.
        • Linstedt A.D.
        • West N.B.
        • Carlisle K.S.
        • Rokosova B.C.
        • et al.
        Increased hyaluronate and collagen biosynthesis and fibroblast estrogenreceptors in macaque sex skin.
        J Invest Dermatol. 1986; 87: 668-673
        • Pierard-Franchimont C.
        • Pierard G.E.
        Postmenopausal aging of the sebaceous follicle: a comparison between women receiving hormone replacement therapy or not.
        Dermatology. 2002; 204: 17-22
        • Tsukahara K.
        • Moriwaki S.
        • Ohuchi A.
        • Fujimura T.
        • Takema Y.
        Ovariectomy accelerates photoaging of rat skin.
        Photochem Photobiol. 2001; 73: 525-531
        • Punnonen R.
        • Vaajalahti P.
        • Teisala K.
        Local oestriol treatment improves the structure of elastic fibers in the skin of postmenopausal women.
        Ann Chir Gynaecol Suppl. 1987; 202: 39-41
        • Ashcroft G.S.
        • Dodsworth J.
        • van Boxtel E.
        • Tarnuzzer R.W.
        • Horan M.A.
        • Schultz G.S.
        • et al.
        Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels.
        Nat Med. 1997; 3: 1209-1215
        • Ashcroft G.S.
        • Greenwell-Wild T.
        • Horan M.A.
        • Wahl S.M.
        • Ferguson M.W.
        Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response.
        Am J Pathol. 1999; 155: 1137-1146
        • Ashcroft G.S.
        • Mills S.J.
        • Flanders K.C.
        • Lyakh L.A.
        • Anzano M.A.
        • Gilliver S.C.
        • et al.
        Role of Smad3 in the hormonal modulation of in vivo wound healing responses.
        Wound Repair Regen. 2003; 11: 468-473
        • Fujimoto J.
        • Hori M.
        • Ichigo S.
        • Tamaya T.
        Ovarian steroids regulate the expression of basic fibroblast growth factor and its mRNA in fibroblasts derived from uterine endometrium.
        Ann Clin Biochem. 1997; 34: 91-96
        • Shanker G.
        • Sorci-Thomas M.
        • Adams M.R.
        Estrogen modulates the inducible expression of platelet-derived growth factor mRNA by monocyte/macrophages.
        Life Sci. 1995; 56: 499-507
        • Pirila E.
        • Ramamurthy N.
        • Maisi P.
        • McClain S.
        • Kucine A.
        • Wahlgren J.
        • et al.
        Wound healing in ovariectomized rats: effects of chemically modified tetracycline (CMT-8) and estrogen on matrix metalloproteinases -8-13 and type I collagen expression.
        Curr Med Chem. 2001; 8: 281-294
        • Pirila E.
        • Parikka M.
        • Ramamurthy N.S.
        • Maisi P.
        • McClain S.
        • Kucine A.
        • et al.
        Chemically modified tetracycline (CMT-8) and estrogen promote wound healing in ovariectomized rats: effects on matrix metalloproteinase-2, membrane type 1 matrix metalloproteinase, and laminin-5 gamma2-chain.
        Wound Repair Regen. 2002; 10: 38-51
        • Kanda N.
        • Watanabe S.
        17β-estradiol enhances the production of nerve growth factor in THP-1- or peripheral blood monocyte-derived macrophages.
        J Invest Dermatol. 2003; 121: 771-780
        • Kanda N.
        • Watanabe S.
        17β-Estradiol enhances the production of granulocyte-macrophage colony-stimulating factor in human keratinocytes.
        J Invest Dermatol. 2004; 123: 329-337
        • Nichols G.E.
        • Gaffey M.J.
        • Mills S.E.
        • Weiss L.M.
        Lobular capillary hemangioma. An immunohistochemical study including steroid hormone receptor status.
        Am J Clin Pathol. 1992; 97: 770-775
        • Yuan K.
        • Jin Y.-T.
        • Lin M.T.
        The detection and comparison of angiogenesis-associated factors in pyogenic granuloma by immunohistochemistry.
        J Periodontol. 2000; 71: 701-709
        • Galeano M.
        • Deodato B.
        • Altavilla D.
        • Cucinotta D.
        • Arsic N.
        • Marini H.
        • et al.
        Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse.
        Diabetologia. 2003; 46: 546-555
        • Kanda N.
        • Watanabe S.
        17β-estradiol enhances vascular endothelial growth factor production and dihydrotestosterone antagonizes the enhancement via the regulation of adenylate cyclase in differentiated THP-1 cells.
        J Invest Dermatol. 2002; 118: 519-529
        • Sengupta K.
        • Banerjee S.
        • Saxena N.K.
        • Banerjee S.K.
        Thrombospondin-1 disrupts estrogen-induced endothelial cell proliferation and migration and its expression is suppressed by estradiol.
        Mol Cancer Res. 2004; 2: 150-158
        • Morales D.E.
        • McGowan K.A.
        • Grant D.S.
        • Maheshwari S.
        • Bhartiya D.
        • Cid M.C.
        • et al.
        Estrogen promotes angiogenic activity in human umbilical vein endothelial cell in vitro and in a murine model.
        Circulation. 1995; 91: 755-763


      Naoko Kanda received MD and PhD in Faculty of Medicine, Tokyo University, Tokyo, Japan in 1987 and 1994, respectively. She is currently working as an associate professor in Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan, since 2002. She was a postdoctoral research fellow in Department of Surgery, UCLA, School of Medicine, USA in 1991 and 1992, a research associate in John Wayne Cancer Institute, USA in 1992 and 1993, and was an assistant professor in Department of Dermatology, University of Tokyo, Japan from 1993 to 1999, and was a Lecturer in Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan from 1999 to 2002. Her research interests include cutaneous immunology, allergy, melanoma, cytokine, and chemokine.