Advertisement
Research Article| Volume 38, ISSUE 3, P177-188, June 2005

Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin

  • Sonja Ständer
    Correspondence
    Corresponding author. Tel.: +49 251 835 6504; fax: +49 251 835 2559.
    Affiliations
    Department of Dermatology and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University Hospital Münster, Von-Esmarchstr. 58, D-48149 Münster, Germany
    Search for articles by this author
  • Martin Schmelz
    Affiliations
    Department of Anesthesiology and Intensive Care Medicine, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Germany
    Search for articles by this author
  • Dieter Metze
    Affiliations
    Department of Dermatology and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University Hospital Münster, Von-Esmarchstr. 58, D-48149 Münster, Germany
    Search for articles by this author
  • Thomas Luger
    Affiliations
    Department of Dermatology and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University Hospital Münster, Von-Esmarchstr. 58, D-48149 Münster, Germany
    Search for articles by this author
  • Roman Rukwied
    Affiliations
    Department of Anesthesiology and Intensive Care Medicine, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Germany
    Search for articles by this author

      Summary

      Background:

      Cannabinoid receptors mediate the psychopharmacological action of marijuana and have been localized in the central and peripheral nervous system as well as on cells of the immune system.

      Objective:

      Up to now, two cannabinoid receptors (CB1 and CB2) have been cloned and recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in the skin.

      Methods:

      In the present immunohistochemical investigation we determined the precise localization of CB1 and CB2 in sections of human skin and in one case of mastocytosis.

      Results:

      CB1 and CB2 immunoreactivity was observed in cutaneous nerve fiber bundles, mast cells, macrophages, epidermal keratinocytes, and the epithelial cells of hair follicles, sebocytes and eccrine sweat glands. In epidermal keratinocytes, hair follicle and sebaceous glands, CB1 and CB2 were distributed in a complementary fashion. Double-immunostaining with an anti-CGRP antibody suggested the presence of cannabinoid receptors on small afferent peptidergic nerves.

      Conclusion:

      The abundant distribution of cannabinoid receptors on skin nerve fibers and mast cells provides implications for an anti-inflammatory, anti-nociceptive action of cannabinoid receptor agonists and suggests their putatively broad therapeutic potential.

      Abbreviations:

      CB (cannabinoid receptor), CGRP (calcitonin gene-related peptide), FITC (fluorescein-isothiocyanate), NF (neurofilament), PGP (protein gene product)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Devane W.A.
        • Dysarz III, F.A.
        • Johnson M.R.
        • Melvin L.S.
        • Howlett A.C.
        Determination and characterization of a cannabinoid receptor in rat brain.
        Mol Pharmacol. 1988; 34: 605-613
        • Matsuda L.A.
        • Lolait S.J.
        • Brownstein M.J.
        • Young A.C.
        • Bonner T.I.
        Structure of a cannabinoid receptor and functional expression of the cloned cDNA.
        Nature. 1990; 346: 561-564
        • Farquhar-Smith W.P.
        • Egertova M.
        • Bradbury E.J.
        • McMahon S.B.
        • Rice A.S.C.
        • Elphick M.R.
        Cannabinoid CB1 receptor expression in rat spinal cord.
        Mol. Cellular Neurosci. 2000; 15: 510-521
        • Mechoulam R.
        • Fride E.
        • Di Marzo V.
        Endocannabinoids.
        Eur. J. Pharmacol. 1998; 359: 1-18
        • Di Marzo V.
        • Bisogno T.
        • De Petrocellis L.
        • Melck D.
        • Martin B.R.
        Cannabimimetic fatty acid derivatives: the anandamide family and other endocannabinoids.
        Curr Med Chem. 1999; 6: 721-744
        • Martin B.R.
        • Compton D.R.
        • Thomas B.F.
        • Prescott W.R.
        • Little P.J.
        • Razdan R.K.
        • et al.
        Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs.
        Pharmacol Biochem Behav. 1991; 40: 471-478
        • Harris J.
        • Drew L.J.
        • Chapman V.
        Spinal anandamide inhibits nociceptive transmission via cannabinoid receptor activation in vivo.
        NeuroReport. 2000; 11: 2817-2819
        • Stein E.A.
        • Fuller S.A.
        • Edgemond W.S.
        • Campbell W.B.
        Physiological and behavioural effects of the endogenous cannabinoid, arachidonylethanolamide (anandamide), in the rat.
        Br J Pharmacol. 1996; 119: 107-114
        • Smith P.B.
        • Compton D.R.
        • Welch S.P.
        • Razdan R.K.
        • Mechoulam R.
        • Martin B.R.
        The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice.
        J Pharmacol Exp Ther. 1994; 270: 219-227
        • Crawley J.N.
        • Corwin R.L.
        • Robinson J.K.
        • Felder C.C.
        • Devane W.A.
        • Axelrod J.
        Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents.
        Pharmacol Biochem Behav. 1993; 46: 967-972
        • Johanek L.M.
        • Simone D.A.
        Activation of peripheral cannabinoid receptors attenuates cutaneous hyperalgesia produced by a heat injury.
        Pain. 2004; 109: 432-442
        • Rukwied R.
        • Watkinson A.
        • McGlone F.
        • Dvorak M.
        Cannabinoid agonists attenuate capsaicin-induced responses in human skin.
        Pain. 2003; 102: 283-288
        • Zygmunt P.M.
        • Petersson J.
        • Andersson D.A.
        • Chuang H.
        • Sorgard M.
        • Di Marzo V.
        • et al.
        Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide.
        Nature. 1999; 400: 452-457
        • Jordt S.E.
        • Bautista D.M.
        • Chuang H.H.
        • McKemy D.D.
        • Zygmunt P.M.
        • Hogestatt E.D.
        • et al.
        Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1.
        Nature. 2004; 427: 260-265
        • Adams I.B.
        • Compton D.R.
        • Martin B.R.
        Assessment of anandamide interaction with the cannabinoid brain receptor: SR 141716A antagonism studies in mice and autoradiographic analysis of receptor binding in rat brain.
        J Pharmacol Exp Ther. 1998; 284: 1209-1217
        • Di Marzo V.
        • Breivogel C.S.
        • Tao Q.
        • Bridgen D.T.
        • Razdan R.K.
        • Zimmer A.M.
        • et al.
        Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain.
        J Neurochem. 2000; 75: 2434-2444
        • Bouaboula M.
        • Rinaldi M.
        • Carayon P.
        • Carillon C.
        • Delpech B.
        • Shire D.
        • et al.
        Cannabinoid-receptor expression in human leukocytes.
        Eur J Biochem. 1993; 214: 173-180
        • Pertwee R.G.
        Evidence for the presence of CB1 cannabinoid receptors on peripheral neurones and for the existence of neuronal non-CB1 cannabinoid receptors.
        Life Sci. 1999; 65: 597-605
        • Munro S.
        • Thomas K.L.
        • Abu-Shaar M.
        Molecular characterization of a peripheral receptor for cannabinoids.
        Nature. 1993; 365: 61-65
        • Matsuda L.A.
        Molecular aspects of cannabinoid receptors.
        Crit Rev Neurobiol. 1997; 11: 143-166
        • Galiegue S.
        • Mary S.
        • Marchand J.
        • Dussossoy D.
        • Carriere D.
        • Carayon P.
        • et al.
        Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations.
        Eur J Biochem. 1995; 232: 54-61
        • Klein T.W.
        • Newton C.
        • Larsen K.
        • Lu L.
        • Perkins I.
        • Nong L.
        • et al.
        The cannabinoid system and immune modulation.
        J Leukoc Biol. 2003; 74: 486-496
        • Arevalo-Martin A.
        • Vela J.M.
        • Molina-Holgado E.
        • Borrell J.
        • Guaza C.
        Therapeutic action of cannabinoids in a murine model of multiple sclerosis.
        J Neurosci. 2003; 23: 2511-2516
        • Killestein J.
        • Hoogervorst E.L.
        • Reif M.
        • Kalkers N.F.
        • Van Loenen A.C.
        • Staats P.G.
        • et al.
        Safety, tolerability, and efficacy of orally administered cannabinoids in MS.
        Neurology. 2002; 58: 1404-1407
        • Abrams D.I.
        • Hilton J.F.
        • Leiser R.J.
        • Shade S.B.
        • Elbeik T.A.
        • Aweeka F.T.
        • et al.
        Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial.
        Ann Intern Med. 2003; 139: 258-266
        • Baker D.
        • Pryce G.
        The therapeutic potential of cannabis in multiple sclerosis.
        Expert Opin Investig Drugs. 2003; 12: 561-567
        • Casanova M.L.
        • Blazquez C.
        • Martinez-Palacio J.
        • Villanueva C.
        • Fernandez-Acenero M.J.
        • Huffman J.W.
        • et al.
        Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors.
        J Clin Invest. 2003; 111: 43-50
        • Liu J.
        • Gao B.
        • Mirshahi F.
        • Sanyal A.J.
        • Khanolkar A.D.
        • Makriyannis A.
        • et al.
        Functional CB1 cannabinoid receptors in human vascular endothelial cells.
        Biochem J. 2000; 346: 835-840
        • Maccarrone M.
        • De Petrocellis L.
        • Bari M.
        • Fezza F.
        • Salvati S.
        • Di M.V.
        • et al.
        Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes.
        Arch Biochem Biophys. 2001; 393: 321
        • Benito C.
        • Nunez E.
        • Tolon R.M.
        • Carrier E.J.
        • Rabano A.
        • Hillard C.J.
        • et al.
        Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains.
        J Neurosci. 2003; 23: 11136-11141
        • Maccarrone M.
        • Di Rienzo M.
        • Battista N.
        • Gasperi V.
        • Guerrieri P.
        • Rossi A.
        • et al.
        The endocannabinoid system in human keratinocytes: Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activating protein-1, and transglutaminase.
        J Biol Chem. 2003; 278: 33896-33903
        • Griffin G.
        • Fernando S.R.
        • Ross R.A.
        • McKay N.G.
        • Ashford M.L.
        • Shire D.
        • et al.
        Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals.
        Eur J Pharmacol. 1997; 339: 53-61
        • Ruiz-Llorente L.
        • Sanchez M.G.
        • Carmena M.J.
        • Prieto J.C.
        • Sanchez-Chapado M.
        • Izquierdo A.
        • et al.
        Expression of functionally active cannabinoid receptor CB1 in the human prostate gland.
        Prostate. 2003; 54: 95-102
        • Straiker A.J.
        • Maguire G.
        • Mackie K.
        • Lindsey J.
        Localization of cannabinoid CB1 receptors in the human anterior eye and retina.
        Invest Ophthalmol Vis Sci. 1999; 40: 2442-2448
        • Katona I.
        • Rancz E.A.
        • Acsady L.
        • Ledent C.
        • Mackie K.
        • Hajos N.
        • et al.
        Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission.
        J Neurosci. 2001; 21: 9506-9518
        • Egertova M.
        • Elphick M.R.
        Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB.
        J Comp Neurol. 2000; 422: 159-171
        • Marsicano G.
        • Lutz B.
        Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain.
        Eur J Neurosci. 1999; 11: 4213-4225
        • Westlake T.M.
        • Howlett A.C.
        • Bonner T.I.
        • Matsuda L.A.
        • Herkenham M.
        Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer's brains.
        Neuroscience. 1994; 63: 637-652
        • Herkenham M.
        • Lynn A.B.
        • Little M.D.
        • Ross Johnson M.
        • Melvin L.S.
        • De Costa B.R.
        • et al.
        Cannabinoid receptor localization in brain.
        Proc Natl Acad Sci USA. 1990; 87: 1932-1936
        • Marsicano G.
        • Wotjak C.T.
        • Azad S.C.
        • Bisogno T.
        • Rammes G.
        • Cascio M.G.
        • et al.
        The endogenous cannabinoid system controls extinction of aversive memories.
        Nature. 2002; 418: 530-534
        • Martin M.
        • Ledent C.
        • Parmentier M.
        • Maldonado R.
        • Valverde O.
        Involvement of CB1 cannabinoid receptors in emotional behaviour.
        Psychopharmacology (Berl). 2002; 159: 379-387
        • Bridges D.
        • Rice A.S.
        • Egertova M.
        • Elphick M.R.
        • Winter J.
        • Michael G.J.
        Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry.
        Neuroscience. 2003; 119: 803-812
        • Hohmann A.G.
        • Briley E.M.
        • Herkenham M.
        Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord.
        Brain Res. 1999; 822: 17-25
        • Ahluwalia J.
        • Urban L.
        • Capogna M.
        • Bevan S.
        • Nagy I.
        Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons.
        Neuroscience. 2000; 100: 685-688
        • Zhang J.
        • Hoffert C.
        • Vu H.K.
        • Groblewski T.
        • Ahmad S.
        • O’Donnell D.
        Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models.
        Eur J Neurosci. 2003; 17: 2750-2754
        • Calignano A.
        • La Rana G.
        • Giuffrida A.
        • Piomelli D.
        Control of pain initiation by endogenous cannabinoids.
        Nature. 1998; 394: 277-281
        • Dogrul A.
        • Gardell L.R.
        • Ma S.
        • Ossipov M.H.
        • Porreca F.
        • Lai J.
        ‘Knock-down’ of spinal CB1 receptors produces abnormal pain and elevates spinal dynorphin content in mice.
        Pain. 2002; 100: 203-209
        • Drew L.J.
        • Harris J.
        • Millns P.J.
        • Kendall D.A.
        • Chapman V.
        Activation of spinal cannabinoid 1 receptors inhibits C-fibre driven hyperexcitable neuronal responses and increases [35S]GTPgammaS binding in the dorsal horn of the spinal cord of noninflamed and inflamed rats.
        Eur J Neurosci. 2000; 12: 2079-2086
        • Conti S.
        • Costa B.
        • Colleoni M.
        • Parolaro D.
        • Giagnoni G.
        Antiinflammatory action of endocannabinoid palmitoylethanolamide and the synthetic cannabinoid nabilone in a model of acute inflammation in the rat.
        Br J Pharmacol. 2002; 135: 181-187
        • Malan T.P.
        • Ibrahim M.M.
        • Vanderah T.W.
        • Makriyannis A.
        • Porreca F.
        Inhibition of pain responses by activation of CB(2) cannabinoid receptors.
        Chem Phys Lipids. 2002; 121: 191-200
        • Nackley A.G.
        • Makriyannis A.
        • Hohmann A.G.
        Selective activation of cannabinoid CB(2) receptors suppresses spinal fos protein expression and pain behavior in a rat model of inflammation.
        Neuroscience. 2003; 119: 747-757
        • Dogrul A.
        • Gul H.
        • Akar A.
        • Yildiz O.
        • Bilgin F.
        • Guzeldemir E.
        Topical cannabinoid antinociception: synergy with spinal sites.
        Pain. 2003; 105: 11-16
        • Yesilyurt O.
        • Dogrul A.
        • Gul H.
        • Seyrek M.
        • Kusmez O.
        • Ozkan Y.
        • et al.
        Topical cannabinoid enhances topical morphine antinociception.
        Pain. 2003; 105: 303-308
        • Bridges D.
        • Ahmad K.
        • Rice A.S.
        The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain.
        Br J Pharmacol. 2001; 133: 586-594
        • Richardson J.D.
        • Kilo S.
        • Hargreaves K.M.
        Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors.
        Pain. 1998; 75: 111-119
        • Ellington H.C.
        • Cotter M.A.
        • Cameron N.E.
        • Ross R.A.
        The effect of cannabinoids on capsaicin-evoked calcitonin gene-related peptide (CGRP) release from the isolated paw skin of diabetic and non-diabetic rats.
        Neuropharmacology. 2002; 42: 966-975
        • Weidner C.
        • Klede M.
        • Rukwied R.
        • Lischetzki G.
        • Neisius U.
        • Skov P.S.
        • et al.
        Acute effects of substance P and calcitonin gene-related peptide in human skin – a microdialysis study.
        J Invest Dermatol. 2000; 115: 1015-1020
        • Schmelz M.
        • Luz O.
        • Averbeck B.
        • Bickel A.
        Plasma extravasation and neuropeptide release in human skin as measured by intradermal microdialysis.
        Neurosci Lett. 1997; 230: 117-120
        • Dvorak M.
        • Watkinson A.
        • McGlone F.
        • Rukwied R.
        Histamine induced responses are attenuated by a cannabinoid receptor agonist in human skin.
        Inflamm Res. 2003; 52: 238-245
        • Kelly S.
        • Jhaveri M.D.
        • Sagar D.R.
        • Kendall D.A.
        • Chapman V.
        Activation of peripheral cannabinoid CB1 receptors inhibits mechanically evoked responses of spinal neurons in noninflamed rats and rats with hindpaw inflammation.
        Eur J Neurosci. 2003; 18: 2239-2243
        • Neff G.W.
        • O’Brien C.B.
        • Reddy K.R.
        • Bergasa N.V.
        • Regev A.
        • Molina E.
        • et al.
        Preliminary observation with dronabinol in patients with intractable pruritus secondary to cholestatic liver disease.
        Am J Gastroenterol. 2002; 97: 2117-2119
        • Kehl L.J.
        • Hamamoto D.T.
        • Wacnik P.W.
        • Croft D.L.
        • Norsted B.D.
        • Wilcox G.L.
        • et al.
        A cannabinoid agonist differentially attenuates deep tissue hyperalgesia in animal models of cancer and inflammatory muscle pain.
        Pain. 2003; 103: 175-186
        • Ibrahim M.M.
        • Deng H.
        • Zvonok A.
        • Cockayne D.A.
        • Kwan J.
        • Mata H.P.
        • et al.
        Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: Pain inhibition by receptors not present in the CNS.
        Proc Natl Acad Sci USA. 2003;
        • Malan T.P.
        • Ibrahim M.M.
        • Deng H.F.
        • Liu Q.
        • Mata H.P.
        • Vanderah T.
        • et al.
        CB2 cannabinoid receptor-mediated peripheral antinociception.
        Pain. 2001; 93: 239-245
        • Quartilho A.
        • Mata H.P.
        • Ibrahim M.M.
        • Vanderah T.W.
        • Porreca F.
        • Makriyannis A.
        • et al.
        Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors.
        Anesthesiology. 2003; 99: 955-960
        • Kaminski N.E.
        • Abood M.E.
        • Kessler F.K.
        • Martin B.R.
        • Schatz A.R.
        Identification of a functionally relevant cannabinoid receptor on mouse spleen cells that is involved in cannabinoid-mediated immune modulation.
        Mol Pharmacol. 1992; 42: 736-742
        • Carlisle S.J.
        • Marciano-Cabral F.
        • Staab A.
        • Ludwick C.
        • Cabral G.A.
        Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation.
        Int Immunopharmacol. 2002; 2: 69-82
        • Blazquez C.
        • Casanova M.L.
        • Planas A.
        • del Pulgar T.G.
        • Villanueva C.
        • Fernandez-Acenero M.J.
        • et al.
        Inhibition of tumor angiogenesis by cannabinoids.
        FASEB J. 2003; 17: 529-531
        • Galve-Roperh I.
        • Sanchez C.
        • Cortes M.L.
        • del Pulgar T.G.
        • Izquierdo M.
        • Guzman M.
        Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation.
        Nat Med. 2000; 6: 313-319
        • Sanchez C.
        • de Ceballos M.L.
        • del Pulgar T.G.
        • Rueda D.
        • Corbacho C.
        • Velasco G.
        • et al.
        Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor.
        Cancer Res. 2001; 61: 5784-5789
        • Leterrier C.
        • Bonnard D.
        • Carrel D.
        • Rossier J.
        • Lenkei Z.
        Constitutive endocytic cycle of the CB1 cannabinoid receptor.
        J Biol Chem. 2004; 279: 36013-36021
        • Martin R.S.
        • Luong L.A.
        • Welsh N.J.
        • Eglen R.M.
        • Martin G.R.
        • MacLennan S.J.
        Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human.
        Br J Pharmacol. 2000; 129: 1707-1715
        • Toyoda M.
        • Nakamura M.
        • Morohashi M.
        Neuropeptides and sebaceous glands.
        Eur J Dermatol. 2002; 12: 422-427
        • Facci L.
        • Dal Toso R.
        • Romanello S.
        • Buriani A.
        • Skaper S.D.
        • Leon A.
        Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide.
        Proc Natl Acad Sci USA. 1995; 92: 3376-3380