Advertisement
Research Article| Volume 50, ISSUE 3, P185-196, June 2008

Download started.

Ok

Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10

      Summary

      Background

      Many viruses have been engineered and evaluated for their potential as therapeutic agents in the treatment of malignant neoplasm, including malignant melanoma.

      Objective

      In this study, we investigated the efficacy of HF10, an attenuated, replication-competent HSV, in immunocompetent animal models with malignant melanoma.

      Methods

      For in vitro study, viral cytotoxicity assays and replication assays were performed both in human and mouse melanoma cells. For the study in vivo, intraperitoneally disseminated or subcutaneous melanoma models were prepared in DBA/2 mice using clone M3 cells, then HF10 was inoculated intraperitoneally or intratumorally. Therapeutic efficacy of HF10 was assessed by survival, tumor growth, and histopathological analysis.

      Results

      HF10 infection produced cytolytic effects in melanoma cells at various multiplicities of infection (MOI). In the intraperitoneal melanoma model, all mice survived when given intraperitoneal injections of HF10 compared with 100% fatality in the control mice. In the subcutaneous tumor model, intratumoral inoculation of HF10 significantly reduced tumor growth. Histology and immunohistochemistry showed tumor lysis and inflammatory cell infiltration after intratumoral HF10 inoculation. Viral antigen was retained at the inoculation site until 7 days post-infection. HF10-treated intraperitoneal tumor mice were also protected against tumor rechallenge. HF10 also affected the non-inoculated contralateral tumor when injected into the ipsilateral tumor of mice, suggesting that HF10 can induce systemic antitumor immune responses in mice.

      Conclusion

      Oncolytic viral therapy using HF10 was effective in melanoma mouse models, and intratumoral injection of HF10 induced systemic antitumor responses. These results suggest that HF10 is a promising agent for the treatment of advanced melanoma.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ishihara K.
        • Saida T.
        • Yamamoto A.
        Updated statistical data for malignant melanoma in Japan.
        Int J Clin Oncol. 2001; 6: 109-116
        • Weinstock M.A.
        Cutaneous melanoma: public health approach to early detection.
        Dermatol Ther. 2006; 19: 26-31
        • Braun R.P.
        • Saurat J.H.
        • French L.E.
        Dermoscopy of pigmented lesions: a valuable tool in the diagnosis of melanoma.
        Swiss Med Wkly. 2004; 134: 83-90
        • Essner R.
        • Belhocine T.
        • Scott A.M.
        • Even-Sapir E.
        Novel imaging techniques in melanoma.
        Surg Oncol Clin N Am. 2006; 15: 253-283
        • Thompson J.F.
        • Scolyer R.A.
        • Kefford R.F.
        Cutaneous melanoma.
        Lancet. 2005; 365: 687-701
        • Tarhini A.A.
        • Agarwala S.S.
        Cutaneous melanoma: available therapy for metastatic disease.
        Dermatol Ther. 2006; 19: 19-25
        • Cross D.
        • Burmester J.K.
        Gene therapy for cancer treatment: past, present and future.
        Clin Med Res. 2006; 4: 218-227
        • Zhang X.
        • Godbey W.T.
        Viral vectors for gene delivery in tissue engineering.
        Adv Drug Deliv Rev. 2006; 58: 515-534
        • Watanabe D.
        • Brockman M.A.
        • Ndung’u T.
        • Mathews L.
        • Lucas W.T.
        • Murphy C.G.
        • et al.
        Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector.
        Virology. 2007; 357: 186-198
        • Kuruppu D.
        • Tanabe K.K.
        Viral oncolysis by herpes simplex virus and other viruses.
        Cancer Biol Ther. 2005; 4: 524-531
        • Aghi M.
        • Martuza R.L.
        Oncolytic viral therapies—the clinical experience.
        Oncogene. 2005; 24: 7802-7816
        • Nawa A.
        • Nozawa N.
        • Goshima F.
        • Nagasaka T.
        • Kikkawa F.
        • Niwa Y.
        • et al.
        Oncolytic viral therapy for human ovarian cancer using a novel replication-competent herpes simplex virus type I mutant in a mouse model.
        Gynecol Oncol. 2003; 91: 81-88
        • Kimata H.
        • Takakuwa H.
        • Goshima F.
        • Teshigahara O.
        • Nakao A.
        • Kurata T.
        • et al.
        Effective treatment of disseminated peritoneal colon cancer with new replication-competent herpes simplex viruses.
        Hepatogastroenterology. 2003; 50: 961-966
        • Teshigahara O.
        • Goshima F.
        • Takao K.
        • Kohno S.
        • Kimata H.
        • Nakao A.
        • et al.
        Oncolytic viral therapy for breast cancer with herpes simplex virus type 1 mutant HF 10.
        J Surg Oncol. 2004; 85: 42-47
        • Kohno S.
        • Luo C.
        • Goshima F.
        • Nishiyama Y.
        • Sata T.
        • Ono Y.
        Herpes simplex virus type 1 mutant HF10 oncolytic viral therapy for bladder cancer.
        Urology. 2005; 66: 1116-1121
        • Nakao A.
        • Kimata H.
        • Imai T.
        • Kikumori T.
        • Teshigahara O.
        • Nagasaka T.
        • et al.
        Intratumoral injection of herpes simplex virus HF10 in recurrent breast cancer.
        Ann Oncol. 2004; 15: 988-989
        • Kimata H.
        • Imai T.
        • Kikumori T.
        • Teshigahara O.
        • Nagasaka T.
        • Goshima F.
        • et al.
        Pilot study of oncolytic viral therapy using mutant herpes simplex virus (HF10) against recurrent metastatic breast cancer.
        Ann Surg Oncol. 2006; 13: 1078-1084
        • Fujimoto Y.
        • Mizuno T.
        • Sugiura S.
        • Goshima F.
        • Kohno S.
        • Nakashima T.
        • et al.
        Intratumoral injection of herpes simplex virus HF10 in recurrent head and neck squamous cell carcinoma.
        Acta Otolaryngol. 2006; 126: 1115-1117
        • Takakuwa H.
        • Goshima F.
        • Nozawa N.
        • Yoshikawa T.
        • Kimata H.
        • Nakao A.
        • et al.
        Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice.
        Arch Virol. 2003; 148: 813-825
        • Ushijima Y.
        • Luo C.
        • Goshima F.
        • Yamauchi Y.
        • Kimura H.
        • Nishiyama Y.
        Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus.
        Microb Infect. 2007; 9: 142-149
        • Watanabe D.
        • Adachi A.
        • Tomita Y.
        • Yamamoto M.
        • Kobayashi M.
        • Nishiyama Y.
        The role of polymorphonuclear leukocyte infiltration in herpes simplex virus infection of murine skin.
        Arch Dermatol Res. 1999; 291: 28-36
        • Chapman P.B.
        • Einhorn L.H.
        • Meyers M.L.
        • Saxman S.
        • Destro A.N.
        • Panageas K.S.
        • et al.
        Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma.
        J Clin Oncol. 1999; 17: 2745-2751
        • Eggermont A.M.
        • Kirkwood J.M.
        Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years?.
        Eur J Cancer. 2004; 40: 1825-1836
        • Eton O.
        • Legha S.S.
        • Bedikian A.Y.
        • Lee J.J.
        • Buzaid A.C.
        • Hodges C.
        • et al.
        Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a phase III randomized trial.
        J Clin Oncol. 2002; 20: 2045-2052
        • Benlalam H.
        • Vignard V.
        • Khammari A.
        • Bonnin A.
        • Godet Y.
        • Pandolfino M.C.
        • et al.
        Infusion of Melan-A/Mart-1 specific tumor-infiltrating lymphocytes enhanced relapse-free survival of melanoma patients.
        Cancer Immunol Immunother. 2007; 56: 515-526
        • Mackensen A.
        • Meidenbauer N.
        • Vogl S.
        • Laumer M.
        • Berger J.
        • Andreesen R.
        Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma.
        J Clin Oncol. 2006; 24: 5060-5069
        • Schadendorf D.
        • Ugurel S.
        • Schuler-Thurner B.
        • et al.
        Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG.
        Ann Oncol. 2006; 17: 563-570
        • Queirolo P.
        • Acquati M.
        Targeted therapies in melanoma.
        Cancer Treat Rev. 2006; 32: 524-531
        • Rampling R.
        • Cruickshank G.
        • Papanastassiou V.
        • Nicoll J.
        • Hadley D.
        • Brennan D.
        • et al.
        Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma.
        Gene Ther. 2000; 7: 859-866
        • Markert J.M.
        • Medlock M.D.
        • Rabkin S.D.
        • et al.
        Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial.
        Gene Ther. 2000; 7: 867-874
        • MacKie R.M.
        • Stewart B.
        • Brown S.M.
        Intralesional injection of herpes simplex virus 1716 in metastatic melanoma.
        Lancet. 2001; 357: 525-526
        • Kemeny N.
        • Brown K.
        • Covey A.
        • Kim T.
        • Bhargava A.
        • Brody L.
        • et al.
        Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver.
        Hum Gene Ther. 2006; 17: 1214-1224
        • Nishiyama Y.
        • Kimura H.
        • Daikoku T.
        Complementary lethal invasion of the central nervous system by nonneuroinvasive herpes simplex virus types 1 and 2.
        J Virol. 1991; 65: 4520-4524
        • Jiang Y.M.
        • Daikoku T.
        • Yamamoto M.
        • Morishima T.
        • Nishiyama Y.
        Growth and cytopathogenicity of herpes simplex virus in a macrophage cell line, RAW264: a good indicator of intraperitoneal pathogenicity.
        Microbiol Immunol. 1995; 39: 905-909
        • Rosen-Wolff A.
        • Lamade W.
        • Berkowitz C.
        • Becker Y.
        • Darai G.
        Elimination of UL56 gene by insertion of LacZ cassette between nucleotide position 116030 to 121753 of the herpes simplex virus type 1 genome abrogates intraperitoneal pathogenicity in tree shrews and mice.
        Virus Res. 1991; 20: 205-221
        • Berkowitz C.
        • Moyal M.
        • Rosen-Wolff A.
        • Darai G.
        • Becker Y.
        Herpes simplex virus type 1 (HSV-1) UL56 gene is involved in viral intraperitoneal pathogenicity to immunocompetent mice.
        Arch Virol. 1994; 134: 73-83
        • Koshizuka T.
        • Kawaguchi Y.
        • Nishiyama Y.
        Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A.
        J Gen Virol. 2005; 86: 527-533
        • Peng W.
        • Henderson G.
        • Inman M.
        • BenMohamed L.
        • Perng G.C.
        • Wechsler S.L.
        • et al.
        The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal Ganglia of acutely infected mice.
        J Virol. 2005; 79: 6162-6171
        • Jones C.
        • Inman M.
        • Peng W.
        • Henderson G.
        • Doster A.
        • Perng G.C.
        • et al.
        The herpes simplex virus type 1 locus that encodes the latency-associated transcript enhances the frequency of encephalitis in male BALB/c mice.
        J Virol. 2005; 79: 14465-14469
        • Todo T.
        • Martuza R.L.
        • Rabkin S.D.
        • Johnson P.A.
        Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing.
        Proc Natl Acad Sci USA. 2001; 98: 6396-6401
        • Miller C.G.
        • Fraser N.W.
        Role of the immune response during neuro-attenuated herpes simplex virus-mediated tumor destruction in a murine intracranial melanoma model.
        Cancer Res. 2000; 60: 5714-5722
        • Herbst-Kralovetz M.
        • Pyles R.
        Toll-like receptors, innate immunity and HSV pathogenesis.
        Herpes. 2006; 13: 37-41
        • Hochrein H.
        • Schlatter B.
        • O’Keeffe M.
        • Wagner C.
        • Schmitz F.
        • Schiemann M.
        • et al.
        Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways.
        Proc Natl Acad Sci USA. 2004; 101: 11416-11421
        • Dai J.
        • Megjugorac N.J.
        • Amrute S.B.
        • Fitzgerald-Bocarsly P.
        Regulation of IFN regulatory factor-7 and IFN-alpha production by enveloped virus and lipopolysaccharide in human plasmacytoid dendritic cells.
        J Immunol. 2004; 173: 1535-1548
        • West M.A.
        • Wallin R.P.
        • Matthews S.P.
        • Svensson H.G.
        • Zaru R.
        • Ljunggren H.G.
        • et al.
        Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling.
        Science. 2004; 305: 1153-1157
        • Yoneyama H.
        • Matsuno K.
        • Toda E.
        • et al.
        Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs.
        J Exp Med. 2005; 202: 425-435
        • Pashenkov M.
        • Goess G.
        • Wagner C.
        • et al.
        Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma.
        J Clin Oncol. 2006; 24: 5716-5724