Advertisement
Research Article| Volume 55, ISSUE 2, P116-122, August 2009

HPV16E7 tumor antigen modified by KDEL sequence induce specific cytotoxic T lymphocytes-dependent antitumor immunity

      Abstract

      Background

      Infection by high-risk HPV (human papillomavirus) is the primary cause of cervical cancer. Dendritic cell-based (DC-based) therapeutic vaccine represents a promising approach to the prevention and treatment of many cancers, including HPV-related cancers, but current strategies have met with only limited success in preclinical and clinical research. It is necessary to find a properly and effective antigen presenting system of DC-based vaccine.

      Objective

      To design a new HPV16 therapeutic vaccine using an endoplasmic reticulum (ER) retrieval signal and study its ability to induce the specific CTL activity in vitro and in vivo.

      Methods

      E7(p)-KDEL and its control peptide were synthesized on solid phase. A series of methods were used, including standard 51Cr-labeled release assay, enzyme-linked immunospot (ELISPOT) assay and ELISA, to detect the CTL activity induced by different peptides. Prophylactic models and therapeutic models were examined to detect the in vivo effectiveness of E7(p)-KDEL-loaded DCs.

      Results

      The specific CTL activity induced by E7(p)-KDEL-loaded DCs was much stronger than that induced by the other peptide-loaded DCs. Comparing with the control peptides, after incubation with the spleen cells of mice, the E7(p)-KDEL-loaded DCs could induce higher concentration of secreted IFN-γ and had higher ELISPOT numbers. In animal models, E7(p)-KDEL-loaded DCs vaccines effectively protected mice against fatal TC-1 tumor challenge and cured tumor-bearing mice.

      Conclusions

      The ER retrieval signal-mediated antigen delivery system may have important clinical application for cancer therapy, even virus infectious disease and autoimmune disease.

      Abbreviations:

      HPV (human papillomavirus), KDEL (Lys-Asp-Glu-Leu), STDs (sexually transmitted diseases), SILs (squamous intraepithelial lesions), CTL (cytotoxic T lymphocyte), TCR (T cell receptor), APC (antigen presenting cells), DC (Dendritic cell), OVA (ovalbumin), HLA (human leucocyte antigen), TAP (Transporter associated with antigen processing), ELISPOT (enzyme-linked immunospot)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stanley M.
        The epidemiology and burden of HPV disease.
        Nurs Times. 2008; 104: 38-40
        • Walboomers J.M.
        • Jacobs M.V.
        • Manos M.M.
        • Bosch F.X.
        • Kummer J.A.
        • Shah K.V.
        • et al.
        Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.
        J Pathol. 1999; 189: 12-19
        • Pagliusi S.R.
        • Aguado M.T.
        Efficacy and other milestones for human papillomavirus vaccine introduction.
        Vaccine. 2004; 23: 569-578
        • Bosch F.X.
        A scientific response to prevent cervical cancer in the world.
        Vaccine. 2008; 19: v-vi
        • Nestle F.O.
        • Alijagic S.
        • Gilliet M.
        • Sun Y.
        • Grabbe S.
        • Dummer R.
        • et al.
        Vaccination of melanoma patients with peptide- or tumor lysate-pulse dendritic cells.
        Nat Med. 1998; 4: 328-332
        • Thurner B.
        • Haendle I.
        • Röder C.
        • Dieckmann D.
        • Keikavoussi P.
        • Jonuleit H.
        • et al.
        Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma.
        J Exp Med. 1999; 190: 1669-1678
        • Bellone M.
        • Cantarella D.
        • Castiglioni P.
        • Crosti M.C.
        • Ronchetti A.
        • Moro M.
        • et al.
        Relevance of the tumor antigen in the validation of three vaccination strategies for malnoma.
        J Immunol. 2000; 165: 2626-2651
        • Schreurs M.W.
        • Eggert A.A.
        • de Boer A.J.
        • Vissers J.L.
        • van Hall T.
        • Offringa R.
        • et al.
        Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model.
        Cancer Res. 2000; 60: 6995-7001
        • Dallal R.M.
        • Lotze M.T.
        The dendritic cell and human cancer vaccine.
        Curr Opin Immunol. 2000; 12: 583-588
        • Bullock T.N.
        • Colella T.A.
        • Engelhard V.H.
        The density of peptides displayed by dendritic cells affects immune responses to human tyrosinase and gp100 in HLA-A2 transgenic mice.
        J Immunol. 2000; 164: 2354-2361
        • Ludewig B
        • Odermatt B.
        • Ochsenbein A.F.
        • Zinkernagel R.M.
        • Hengartner H.
        Role of dendritic cells in the induction and maintenance of autoimmune diseases.
        Immunol Rev. 1999; 169: 45-54
        • Slansky J.E.
        • Rattis F.M.
        • Boyd L.F.
        • Fahmy T.
        • Jaffee E.M.
        • Schneck J.P.
        • et al.
        Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex.
        Immunity. 2000; 13: 529-538
        • Parkhurst M.R.
        • Salgaller M.L.
        • Southwood S.
        • Robbins P.F.
        • Sette A.
        • Rosenberg S.A.
        • et al.
        Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues.
        J Immunol. 1996; 157: 2539-2548
        • Valmori D.
        • Fonteneau J.F.
        • Lizana C.M.
        • Gervois N.
        • Lienard D.
        • Rimoldi D.
        • et al.
        Enhanced generation of specific tumorreactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues.
        J Immunol. 1998; 160: 1750-1758
        • Wang H.Y.
        • Fu T.
        • Wang G.
        • Zeng G.
        • Perry-Lally D.M.
        • Yang J.C.
        • et al.
        Induction of CD4(+) T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells.
        J Clin Invest. 2002; 109: 1463-1470
        • Wang R.F.
        • Wang H.Y.
        Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells.
        Nat Biotechnol. 2002; 20: 149-154
        • Lin K.Y.
        • Guarnieri F.G.
        • Staveley-O’Carroll K.F.
        • Levitsky H.I.
        • August J.T.
        • Pardoll D.M.
        • et al.
        Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen.
        Cancer Res. 1996; 56: 21-26
        • Steinman R.M.
        • Witmer M.D.
        Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice.
        Proc Natl Acad Sci USA. 1978; 75: 5132-5136
        • Boon T.
        • Van Snick J.
        • Van Pel A.
        • Uyttenhove C.
        • Marchand M.
        Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T lymphocyte-mediated cytolysis.
        J Exp Med. 1980; 152: 1184-1193
        • Wang L.
        • Wu Y.Z.
        • Chen A.
        • Zhang J.B.
        • Yang Z.
        • Niu W.
        • et al.
        MHC class I associated presentation of exogenous peptides is not only enhanced but also prolonged by linking with a C-terminal Lys-Asp-Glu-Leu endoplasmic reticulum retrieval signal.
        Eur J Immunol. 2004; 34: 3582-3594
        • Doan T.
        • Chambers M.
        • Street M.
        • Fernando G.J.
        • Herd K.
        • Lambert P.
        • et al.
        Mice expressing the E7 oncogene of HPV16 in epithelium show central tolerance, and evidence of peripheral anergising tolerance, to E7-encoded cytotoxic T-lymphocyte epitopes.
        Virology. 1998; 244: 352-364
        • Anderson S.
        • Mints M.
        • Sällströn J.
        • Wilander E.
        The relative distribution of oncogneic types of human papillomavirus in benign, pre-malignant and malignant cervical biopsies. A study with human papillomavirus deoxyribonucleic acid sequence analysis.
        Cancer Detect Prev. 2005; 29: 37-41
        • Stanley M.
        Immune responses to human papillomavirus.
        Vaccine. 2006; 24 Suppl 1: S16-S22
        • Scholten K.B.
        • Schreurs M.W.
        • Ruizendaal J.J.
        • Kueter E.W.
        • Kramer D.
        • Veenbergen S.
        • et al.
        Preservation and redirection of HPV16E7-specific T cell receptors for immunotherapy of cervical cancer.
        Clin Immunol. 2005; 114: 119-129
        • Ressing M.E.
        • Stte A.
        • Brandt R.M.
        • Ruppert J.
        • Wentworth P.A.
        • Hartman M.
        Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides.
        J Immunol. 1995; 154: 5934-5943
        • Sidney J.
        • Grey H.M.
        • Kubo R.T.
        • Sette A.
        Practical, biochemical and evolutionary implications of HLA class I supermotifs.
        Immnol Today. 1996; 17: 261-266
        • Eiben G.L.
        • Velders M.P.
        • Schreiber H.
        • Cassetti M.C.
        • Pullen J.K.
        • Smith L.R.
        • et al.
        Establishment of an HLA-A*0201 human papillomavirus type 16 tumor model to determine the efficiency of vaccination strategies in HLA-A*0201 transgenic mice.
        Cancer Res. 2002; 62: 5792-5799
        • Davidson E.J.
        • Kitchener H.C.
        • Stern P.L.
        The use of vaccines in the prevention and treatment of cervical cancer.
        Clin Oncol. 2002; 14: 193-200
        • Pap E.H.
        • Dansen T.B.
        • van Summeren R.
        • Wirtz K.W.
        Peptide-based targeting of fluorophores to organelles in living cells.
        Exp Cell Res. 2001; 265: 288-293
        • Pichon C.
        • Arar K.
        • Stewart A.J.
        • Dodon M.D.
        • Gazzolo L.
        • Courtoy P.J.
        • et al.
        Intracellular routing and inhibitory activity of oligonucleopeptides containing a KDEL motif.
        Mol Pharmacol. 1997; 51: 431-438
        • Johannes L.
        • Tenza D.
        • Antony C.
        • Goud B.
        Retrograde transport of KDEL-bearing B-fragment of Shiga toxin.
        J Biol Chem. 1997; 272: 19554-19561
        • Griffiths G.
        • Ericsson M.
        • Krijnse-Locker J.
        • Nilsson T.
        • Goud B.
        • Soling H.D.
        • et al.
        Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells.
        J Cell Biol. 1994; 127: 1557-1574
        • Day P.M.
        • Yewdell J.W.
        • Porgador A.
        • Germain R.N.
        • Bennink J.R.
        Direct delivery of exogenous MHC class I molecule-binding oligopeptides to the endoplasmic reticulum of viable cells.
        Proc Natl Acad Sci USA. 1997; 94: 8064-8069
        • Luft T.
        • Rizkalla M.
        • Tai T.Y.
        • Chen Q.
        • MacFarlan R.I.
        • Davis I.D.
        • et al.
        Exogenous peptides presented by transporter associated with antigen processing (TAP)-deficient and TAP-competent cells: intracellular loading and kinetics of presentation.
        J Immunol. 2001; 167: 2529-2537
        • Levitt J.M.
        • Howell D.D.
        • Rodgers J.R.
        • Rich R.R.
        Exogenous peptides enter the endoplasmic reticulum of TAP deficient cells and induce the maturation of nascent MHC class I molecules.
        Eur J Immunol. 2001; 31: 1181-1190
        • Townsend A.
        • Ohlen C.
        • Bastin J.
        • Ljunggren H.G.
        • Foster L.
        • Karre K.
        Association of class I major histocompatibility heavy and light chains induced by viral peptides.
        Nature. 1989; 340: 443-448
        • Hahn Y.S.
        • Hahn C.S.
        • Braciale T.J.
        Endogenous presentation of a nascent antigenic epitope to CD8+ CTL is more efficient than exogenous presentation.
        Immunol Cell Biol. 1996; 74: 394-400