Differential down-regulation of COX-2 and MMP-13 in human skin fibroblasts by glucosamine-hydrochloride



      Evidence suggests anti-inflammatory effects of glucosamine (GS) on inflammatory diseases. COX-2 is an enzyme to produce prostaglandins. MMPs are the family of matrix metalloproteinases degradable of ECM. Excess expression of COX-2 or MMPs involves in skin inflammation.


      We evaluated whether GS–HCl modulates expression of COX-2 and/or MMPs by IL-1β or PMA in human skin fibroblasts (HSF) or keratinocytes (HaCaT).


      HSF or HaCaT cells were exposed to IL-1β or PMA without or with GS–HCl. COX-2 or MMPs protein and mRNA expression, respectively, were analyzed by Western blot and RT-PCR. MTS assay was utilized to assess the cytotoxicity of GS–HCl on HSF cells.


      In HSF cells, IL-1β treatment induced COX-2 and MMP-13 expressions in association with activation of ERKs, p38 MAPK, JNKs, and NF-κB. PMA treatment also induced COX-2 and MMP-13 expressions in association with p38 MAPK activation. Of interest, treatment with GS–HCl (10 mM) led to blockage of p38 MAPK activation, accumulation of 66 kDa COX-2 protein variant (without affecting COX-2 mRNA expression), and transcriptional down-regulation of MMP-13 in the IL-1β- or PMA-treated HSF cells. Distinctly, pharmacological inhibition of p38 MAPK with SB203580 was associated with transcriptional down-regulation of COX-2 and MMP-13 in the IL-1β- or PMA-treated HSF cells. In addition, the GS–HCl-mediated COX-2 protein modification was observed in both endogenous and PMA-induced COX-2 in HaCaT cells.


      GS–HCl differentially down-regulates COX-2 and MMP-13 expression in the IL-1β- or PMA-treated human skin fibroblasts via the p38 MAPK-independent COX-2 translational inhibition and the p38 MAPK-dependent MMP-13 transcriptional suppression, respectively.


      COX (cyclooxygenase), ECM (extracellular matrix), ERKs (extracellular signal-regulated protein kinases), FBS (fetal bovine serum), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), GS (glucosamine), GS-HCl (glucosamine-hydrochloride), HSF (human skin fibroblast), IκB-α (inhibitory κB-alpha), IL-1β (interleukin-1beta), JNKs (c-Jun N-terminal protein kinases), LPS (lipopolysaccharide), MAPKs (mitogen-activated protein kinases), MMPs (matrix metalloproteinases), MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), NF-κB (nuclear factor kappa B), PG (prostaglandin), PGE2 (prostaglandin E2), PMA (phorbol-12-myristate-13-acetate), TNF-α (tumor necrosis factor-alpha)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Hua J.
        • Suguro S.
        • Hirano S.
        • Sakamoto K.
        • Nagaoka I.
        Preventive actions of a high dose of glucosamine on adjuvant arthritis in rats.
        Inflamm Res. 2005; 54: 127-132
        • Reginster J.Y.
        • Deroisy R.
        • Rovati L.C.
        • Lee R.L.
        • Lejeune E.
        • Bruyere O.
        • et al.
        Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial.
        Lancet. 2001; 357: 251-256
        • Nakamura H.
        • Shibakawa A.
        • Tanaka M.
        • Kato T.
        • Nishioka K.
        Effects of glucosamine hydrochloride on the production of prostaglandin E2, nitric oxide and metalloproteases by chondrocytes and synoviocytes in osteoarthritis.
        Clin Exp Rheumatol. 2004; 22: 293-299
        • Largo R.
        • Alvarez-Soria M.A.
        • Díez-Ortego I.
        • Calvo E.
        • Sánchez-Pernaute O.
        • Egido J.
        • et al.
        Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes.
        Osteoarthritis Cartilage. 2003; 11: 290-298
        • Smith W.L.
        • Dewitt D.L.
        Prostaglandin endoperoxide H synthases-1 and -2.
        Adv Immunol. 1996; 62: 167-215
        • Vane J.R.
        • Bakhle Y.S.
        • Botting R.M.
        Cyclooxygenases 1 and 2.
        Annu Rev Pharmacol Toxicol. 1998; 38: 97-120
        • Hla T.
        • Ristimäki A.
        • Appleby S.
        • Barriocanal J.G.
        Cyclooxygenase gene expression in inflammation and angiogenesis.
        Ann N Y Acad Sci. 1993; 696: 197-204
        • Smith W.L.
        • Garavito R.M.
        • DeWitt D.L.
        Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2.
        J Biol Chem. 1996; 271: 33157-33160
        • Williams G.W.
        An update on nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors.
        Curr Pain Headache Rep. 2005; 9: 377-389
        • Herschman H.R.
        • Reddy S.T.
        • Xie W.
        Function and regulation of prostaglandin synthase-2.
        Adv Exp Med Biol. 1997; 407: 61-66
        • Newton R.
        • Kuitert L.M.
        • Bergmann M.
        • Adcock I.M.
        • Barnes P.J.
        Evidence for involvement of NF-kappaB in the transcriptional control of COX-2 gene expression by IL-1beta.
        Biochem Biophys Res Commun. 1997; 237: 28-32
        • Inoue H.
        • Yokoyama C.
        • Hara S.
        • Tone Y.
        • Tanabe T.
        Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element.
        J Biol Chem. 1995; 270: 24965-24971
        • Ristimäki A.
        • Garfinkel S.
        • Wessendorf J.
        • Maciag T.
        • Hla T.
        Induction of cyclooxygenase-2 by interleukin-1 alpha. Evidence for post-transcriptional regulation.
        J Biol Chem. 1994; 269: 11769-11775
        • Srivastava S.K.
        • Tetsuka T.
        • Daphna-Iken D.
        • Morrison A.R.
        IL-1 beta stabilizes COX II mRNA in renal mesangial cells: role of 3’-untranslated region.
        Am J Physiol. 1994; 267: F504-F508
        • Jang B.C.
        • Muñoz-Najar U.
        • Paik J.H.
        • Claffey K.
        • Yoshida M.
        • Hla T.
        • et al.
        an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression.
        J Biol Chem. 2003; 278: 2773-2776
        • Nemeth J.F.
        • Hochgesang Jr., G.P.
        • Marnett L.J.
        • Caprioli R.M.
        Characterization of the glycosylation sites in cyclooxygenase-2 using mass spectrometry.
        Biochemistry. 2001; 40: 3109-3116
        • Hla T.
        • Neilson K.
        Human cyclooxygenase-2 cDNA.
        Proc Natl Acad Sci U S A. 1992; 89: 7384-7388
        • Otto J.C.
        • DeWitt D.L.
        • Smith W.L.
        N-glycosylation of prostaglandin endoperoxide synthases-1 and -2 and their orientations in the endoplasmic reticulum.
        J Biol Chem. 1993; 268: 18234-18242
        • Mbonye U.R.
        • Wada M.
        • Rieke C.J.
        • Tang H.Y.
        • Dewitt D.L.
        • Smith W.L.
        The 19-amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the endoplasmic reticulum-associated degradation system.
        J Biol Chem. 2006; 281: 35770-35778
        • Kang Y.J.
        • Mbonye U.R.
        • DeLong C.J.
        • Wada M.
        • Smith W.L.
        Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation.
        Prog Lipid Res. 2007; 46: 108-125
        • Jang B.C.
        • Sung S.H.
        • Park J.G.
        • Park J.W.
        • Bae J.H.
        • Shin D.H.
        • et al.
        Glucosamine hydrochloride specifically inhibits COX-2 by preventing COX-2 N-glycosylation and by increasing COX-2 protein turnover in a proteasome-dependent manner.
        J Biol Chem. 2007; 282: 27622-27632
        • Mbonye U.R.
        • Yuan C.
        • Harris C.E.
        • Sidhu R.S.
        • Song I.
        • Arakawa T.
        • et al.
        Two distinct pathways for cyclooxygenase-2 protein degradation.
        J Biol Chem. 2008; 283: 8611-8623
        • Chen W.
        • Tang Q.
        • Gonzales M.S.
        • Bowden G.T.
        Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes.
        Oncogene. 2001; 20: 3921-3926
        • Hunot S.
        • Vila M.
        • Teismann P.
        • Davis R.J.
        • Hirsch E.C.
        • Przedborski S.
        • et al.
        JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease.
        Proc Natl Acad Sci U S A. 2004; 101: 665-670
        • Jang B.C.
        • Kim D.H.
        • Park J.W.
        • Kwon T.K.
        • Kim S.P.
        • Song D.K.
        • et al.
        Induction of cyclooxygenase-2 in macrophages by catalase: role of NF-kappaB and PI3K signaling pathways.
        Biochem Biophys Res Commun. 2004; 316: 398-406
        • Singer A.J.
        • Clark R.A.
        Cutaneous wound healing.
        N Engl J Med. 1999; 341: 738-746
        • Sternlicht M.D.
        • Werb Z.
        How matrix metalloproteinases regulate cell behavior.
        Annu Rev Cell Dev Biol. 2001; 17: 463-516
        • Manicone A.M.
        • McGuire J.K.
        Matrix metalloproteinases as modulators of inflammation.
        Semin Cell Dev Biol. 2008; 19: 34-41
        • Deryugina E.I.
        • Quigley J.P.
        Matrix metalloproteinases and tumor metastasis.
        Cancer Metastasis Rev. 2006; 25: 9-34
        • Yan C.
        • Boyd D.D.
        Regulation of matrix metalloproteinase gene expression.
        J Cell Physiol. 2007; 211: 19-26
        • Yokoo T.
        • Kitamura M.
        Dual regulation of IL-1 beta-mediated matrix metalloproteinase-9 expression in mesangial cells by NF-kappa B and AP-1.
        Am J Physiol. 1996; 270: F123-F130
        • Raymond L.
        • Eck S.
        • Mollmark J.
        • Hays E.
        • Tomek I.
        • Kantor S.
        • et al.
        Interleukin-1 beta induction of matrix metalloproteinase-1 transcription in chondrocytes requires ERK-dependent activation of CCAAT enhancer-binding protein-beta.
        J Cell Physiol. 2006; 207: 683-688
        • Vincenti M.P.
        • Brinckerhoff C.E.
        Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you?.
        J Cell Physiol. 2007; 213: 355-364
        • Yoshida N.
        • Kanekura T.
        • Higashi Y.
        • Kanzaki T.
        Bidens pilosa suppresses interleukin-1beta-induced cyclooxygenase-2 expression through the inhibition of mitogen activated protein kinases phosphorylation in normal human dermal fibroblasts.
        J Dermatol. 2006; 33: 676-683
        • Wu N.
        • Opalenik S.
        • Liu J.
        • Jansen E.D.
        • Giro M.G.
        • Davidson J.M.
        Real-time visualization of MMP-13 promoter activity in transgenic mice.
        Matrix Biol. 2002; 21: 149-161
        • Dasu M.R.
        • Barrow R.E.
        • Spies M.
        • Herndon D.N.
        Matrix metalloproteinase expression in cytokine stimulated human dermal fibroblasts.
        Burns. 2003; 29: 527-531
        • Shin Y.
        • Yoon S.H.
        • Choe E.Y.
        • Cho S.H.
        • Woo C.H.
        • Rho J.Y.
        • et al.
        PMA-induced up-regulation of MMP-9 is regulated by a PKCalpha-NF-kappaB cascade in human lung epithelial cells.
        Exp Mol Med. 2007; 39: 97-105
        • Van Dross R.T.
        • Hong X.
        • Pelling J.C.
        Inhibition of TPA-induced cyclooxygenase-2 (COX-2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes.
        Mol Carcinog. 2005; 44: 83-91
        • Largo R.
        • Alvarez-Soria M.A.
        • Díez-Ortego I.
        • Calvo E.
        • Sánchez-Pernaute O.
        • Egido J.
        • et al.
        Glucosamine inhibits IL-1beta-induced NF kappaB activation in human osteoarthritic chondrocytes.
        Osteoarthritis Cartilage. 2003; 11: 290-298
        • Rafi M.M.
        • Yadav P.N.
        • Rossi A.O.
        Glucosamine inhibits LPS-induced COX-2 and iNOS expression in mouse macrophage cells (RAW 264.7) by inhibition of p38-MAP kinase and transcription factor NF-kappaB.
        Mol Nutr Food Res. 2007; 51: 587-593
        • Davidson M.B.
        • Hunt K.
        • Fernandez-Mejia C.
        The hexosamine biosynthetic pathway and glucose-induced down regulation of glucose transport in L6 myotubes.
        Biochim Biophys Acta. 1994; 1201: 113-117
        • Qiu W.
        • Avramoglu R.K.
        • Rutledge A.C.
        • Tsai J.
        • Adeli K.
        Mechanisms of glucosamine-induced suppression of the hepatic assembly and secretion of apolipoprotein B-100-containing lipoproteins.
        J Lipid Res. 2006; 47: 1749-1761
        • Imperiali B.
        • Hendrickson T.L.
        Asparagine-linked glycosylation: specificity and function of oligosaccharyl transferase.
        Bioorg Med Chem. 1995; 3: 1565-1578
        • Comunale M.A.
        • Mattu T.S.
        • Lowman M.A.
        • Evans A.A.
        • London W.T.
        • Semmes O.J.
        • et al.
        Comparative proteomic analysis of de-N-glycosylated serum from hepatitis B carriers reveals polypeptides that correlate with disease status.
        Proteomics. 2004; 4: 826-838
        • Suzuki T.
        • Park H.
        • Hollingsworth N.M.
        • Sternglanz R.
        • Lennarz W.J.
        PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase.
        J Cell Biol. 2000; 149: 1039-1052
        • d’Abusco A.S.
        • Calamia V.
        • Cicione C.
        • Grigolo B.
        • Politi L.
        • Scandurra R.
        Glucosamine affects intracellular signalling through inhibition of mitogen-activated protein kinase phosphorylation in human chondrocytes.
        Arthritis Res Ther. 2007; 9: R104
        • Lin Y.C.
        • Liang Y.C.
        • Sheu M.T.
        • Lin Y.C.
        • Hsieh M.S.
        • Chen T.F.
        • et al.
        Chondroprotective effects of glucosamine involving the p38 MAPK and Akt signaling pathways.
        Rheumatol Int. 2008; 28: 1009-1016
        • Tindberg N.
        • Porsmyr-Palmertz M.
        • Simi A.
        Contribution of MAP kinase pathways to the activation of ATF-2 in human neuroblastoma cells.
        Neurochem Res. 2000; 25: 527-531
        • Rossa Jr., C.
        • Liu M.
        • Bronson P.
        • Kirkwood K.L.
        Transcriptional activation of MMP-13 by periodontal pathogenic LPS requires p38 MAP kinase.
        J Endotoxin Res. 2007; 13: 85-93
        • Pham H.
        • Vincenti R.
        • Slice L.W.
        COX-2 promoter activation by AT1R-Gq-PAK-p38beta signaling in intestinal epithelial cells.
        Biochim Biophys Acta. 2008; 1779: 408-413
        • Jang B.C.
        • Sanchez T.
        • Schaefers H.J.
        • Trifan O.C.
        • Liu C.H.
        • Creminon C.
        • et al.
        Serum withdrawal-induced post-transcriptional stabilization of cyclooxygenase-2 mRNA in MDA-MB-231 mammary carcinoma cells requires the activity of the p38 stress-activated protein kinase.
        J Biol Chem. 2000; 275: 39507-39515
        • Hofmann U.B.
        • Westphal J.R.
        • Van Muijen G.N.
        • Ruiter D.J.
        Matrix metalloproteinases in human melanoma.
        J Invest Dermatol. 2000; 115: 337-344
        • Rundhaug J.E.
        • Pavone A.
        • Kim E.
        • Fischer S.M.
        The role of topical cyclo-oxygenase-2 inhibitors in skin cancer: treatment and prevention.
        Mol Carcinog. 2007; 46: 981-992