Advertisement
Research Article| Volume 57, ISSUE 1, P51-56, January 2010

Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients

      Abstract

      Background

      Psoriasis is a common dermatological disorder, in which autoimmunity plays an important role. CD4+CD25+ regulatory T cells (T-regs) have been suggested to be involved in the pathogenesis of some autoimmune diseases. T-regs express the fork head/winged helix transcription factor, FOXP3, which appears to be of key importance in the development and function of T-regs. Studies have found that single-nucleotide polymorphisms (SNPs) in the FOXP3 gene contribute to susceptibility to some autoimmune disorders. However, information about FOXP3 gene in psoriasis is limited.

      Objective

      This study evaluated the association between FOXP3 gene SNPs and susceptibility to psoriasis in a Han Chinese population.

      Methods

      In a hospital-based case–control study, 524 patients with psoriasis and 549 psoriasis-free controls were recruited according to age and gender. We investigated four SNPs in the FOXP3 gene (-6054, deletion/ATT; -3279, A/C; -924, A/G; IVS9+459, A/G) in psoriatic patients, and assessed allele and genotype frequencies in psoriatic patients (237 females, 287 males) and normal controls (272 females, 277 males). The polymorphisms were genotyped using the PCR sequence-specific primer (PCR-SSP) technique and PCR-restriction fragment length polymorphism (RFLP) analysis.

      Results

      We found that increased risk of psoriasis was associated with the FOXP3 -3279 AC genotype (adjusted OR, 1.32; 95% CI, 1.01–1.74) and the combined AC + AA genotype (adjusted OR, 1.38; 95% CI, 1.07–1.78), compared with the -3279 CC genotype. We also found that an increased risk of psoriasis was associated with the FOXP3 IVS9+459 GG genotype (adjusted OR, 2.24; 95% CI, 1.41–3.58). However, the combined GA + GG genotype showed no such tendency (adjusted OR = 1.28; 95% CI, 1.00–1.64), compared with the IVS9+459 AA genotype. There was no evidence of an increased risk associated with the FOXP3-6054 deletion/ATT or FOXP3-924 A/G genotype. In combined genotype analyses, the FOXP3-3279 AC + AA genotype was more obviously associated in males (adjusted OR = 1.60, 95% CI = 1.11–2.31) and severe psoriasis patients (PASI score >20; adjusted OR = 1.97, 95% CI = 1.41–2.75). Meanwhile, the FOXP3 IVS9+459 GA + GG genotype was also associated with severe psoriasis patients (adjusted OR = 1.69, 95% CI = 1.21–2.36).

      Conclusions

      FOXP3 polymorphisms appear to contribute to the risk of psoriasis in a Han Chinese population. Larger studies are needed to confirm these findings.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weinstein G.D.
        • Frost P.
        Abnormal cell proliferation in psoriasis.
        J Invest Dermatol. 1968; 50: 254-259
        • Christophers E.
        Psoriasis—epidemiology and clinical spectrum.
        Clin Exp Dermatol. 2001; 26: 314-320
        • Langley R.G.
        • Krueger G.G.
        • Griffiths C.E.
        Psoriasis: epidemiology, clinical features, and quality of life.
        Ann Rheum Dis. 2005; 64 (discussion ii4–5): ii18-ii23
        • Schlaak J.F.
        • Buslau M.
        • Jochum W.
        • Hermann E.
        • Girndt M.
        • Gallati H.
        • et al.
        T cells involved in psoriasis vulgaris belong to the Th1 subset.
        J Invest Dermatol. 1994; 102: 145-149
        • Gilhar A.
        • David M.
        • Ullmann Y.
        • Berkutski T.
        • Kalish R.S.
        T-lymphocyte dependence of psoriatic pathology in human psoriatic skin grafted to SCID mice.
        J Invest Dermatol. 1997; 109: 283-288
        • de Boer O.J.
        • van der Loos C.M.
        • Teeling P.
        • van der Wal A.C.
        • Teunissen M.B.
        Immunohistochemical analysis of regulatory T cell markers FOXP3 and GITR on CD4+CD25+ T cells in normal skin and inflammatory dermatoses.
        J Histochem Cytochem. 2007; 55: 891-898
        • Bos J.D.
        • De Rie M.A.
        The pathogenesis of psoriasis: immunological facts and speculations.
        Immunol Today. 1999; 20: 40-46
        • Boehncke W.H.
        • Dressel D.
        • Zollner T.M.
        • Kaufmann R.
        Pulling the trigger on psoriasis.
        Nature. 1996; 379: 777
        • Bovenschen H.J.
        • van Vlijmen-Willems I.M.
        • van de Kerkhof P.C.
        • van Erp P.E.
        Identification of lesional CD4+ CD25+ Foxp3+ regulatory T cells in Psoriasis.
        Dermatology. 2006; 213: 111-117
        • Wrone-Smith T.
        • Nickoloff B.J.
        Dermal injection of immunocytes induces psoriasis.
        J Clin Invest. 1996; 98: 1878-1887
        • Sugiyama H.
        • Gyulai R.
        • Toichi E.
        • Garaczi E.
        • Shimada S.
        • Stevens S.R.
        • et al.
        Dysfunctional blood and target tissue CD4+CD25 high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation.
        J Immunol. 2005; 174: 164-173
        • Sakaguchi S.
        • Sakaguchi N.
        • Asano M.
        • Itoh M.
        • Toda M.
        Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.
        J Immunol. 1995; 155: 1151-1164
        • Suri-Payer E.
        • Amar A.Z.
        • Thornton A.M.
        • Shevach E.M.
        CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells.
        J Immunol. 1998; 160: 1212-1218
        • Taylor P.A.
        • Noelle R.J.
        • Blazar B.R.
        CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade.
        J Exp Med. 2001; 193: 1311-1318
        • Viglietta V.
        • Baecher-Allan C.
        • Weiner H.L.
        • Hafler D.A.
        Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis.
        J Exp Med. 2004; 199: 971-979
        • Lindley S.
        • Dayan C.M.
        • Bishop A.
        • Roep B.O.
        • Peakman M.
        • Tree T.I.
        Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes.
        Diabetes. 2005; 54: 92-99
        • Hori S.
        • Nomura T.
        • Sakaguchi S.
        Control of regulatory T cell development by the transcription factor Foxp3.
        Science. 2003; 299: 1057-1061
        • Takahashi T.
        • Tagami T.
        • Yamazaki S.
        • Uede T.
        • Shimizu J.
        • Sakaguchi N.
        • et al.
        Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4.
        J Exp Med. 2000; 192: 303-310
        • McHugh R.S.
        • Whitters M.J.
        • Piccirillo C.A.
        • Young D.A.
        • Shevach E.M.
        • Collins M.
        • et al.
        CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor.
        Immunity. 2002; 16: 311-323
        • Read S.
        • Malmstrom V.
        • Powrie F.
        Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation.
        J Exp Med. 2000; 192: 295-302
        • Schubert L.A.
        • Jeffery E.
        • Zhang Y.
        • Ramsdell F.
        • Ziegler S.F.
        Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation.
        J Biol Chem. 2001; 276: 37672-37679
        • Wildin R.S.
        • Smyk-Pearson S.
        • Filipovich A.H.
        Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome.
        J Med Genet. 2002; 39: 537-545
        • Bassuny W.M.
        • Ihara K.
        • Sasaki Y.
        • Kuromaru R.
        • Kohno H.
        • Matsuura N.
        • et al.
        A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes.
        Immunogenetics. 2003; 55: 149-156
        • Park O.
        • Grishina I.
        • Leung P.S.
        • Gershwin M.E.
        • Prindiville T.
        Analysis of the Foxp3/scurfin gene in Crohn's disease.
        Ann N Y Acad Sci. 2005; 1051: 218-228
        • Kagen M.H.
        • McCormick T.S.
        • Cooper K.D.
        Regulatory T cells in psoriasis.
        Ernst Schering Res Found Workshop. 2006; : 193-209
        • Verhagen J.
        • Akdis M.
        • Traidl-Hoffmann C.
        • Schmid-Grendelmeier P.
        • Hijnen D.
        • Knol E.F.
        • et al.
        Absence of T-regulatory cell expression and function in atopic dermatitis skin.
        J Allergy Clin Immunol. 2006; 117: 176-183
        • Henseler T.
        • Christophers E.
        Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris.
        J Am Acad Dermatol. 1985; 13: 450-456
        • de Rie M.A.
        • Goedkoop A.Y.
        • Bos J.D.
        Overview of psoriasis.
        Dermatol Ther. 2004; 17: 341-349
        • Marson A.
        • Kretschmer K.
        • Frampton G.M.
        • Jacobsen E.S.
        • Polansky J.K.
        • MacIsaac K.D.
        • et al.
        Foxp3 occupancy and regulation of key target genes during T-cell stimulation.
        Nature. 2007; 445: 931-935
        • Zheng Y.
        • Josefowicz S.Z.
        • Kas A.
        • Chu T.T.
        • Gavin M.A.
        • Rudensky A.Y.
        Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells.
        Nature. 2007; 445: 936-940
        • Bennett C.L.
        • Ochs H.D.
        IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena.
        Curr Opin Pediatr. 2001; 13: 533-538
        • Chatila T.A.
        • Blaeser F.
        • Ho N.
        • Lederman H.M.
        • Voulgaropoulos C.
        • Helms C.
        • et al.
        JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome.
        J Clin Invest. 2000; 106: R75-R81
        • Gambineri E.
        • Torgerson T.R.
        • Ochs H.D.
        Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis.
        Curr Opin Rheumatol. 2003; 15: 430-435
        • Nieves D.S.
        • Phipps R.P.
        • Pollock S.J.
        • Ochs H.D.
        • Zhu Q.
        • Scott G.A.
        • et al.
        Dermatologic and immunologic findings in the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome.
        Arch Dermatol. 2004; 140: 466-472