Advertisement

Role of antioxidants in the skin: Anti-aging effects

      Abstract

      Intracellular and extracellular oxidative stress initiated by reactive oxygen species (ROS) advance skin aging, which is characterized by wrinkles and atypical pigmentation. Because UV enhances ROS generation in cells, skin aging is usually discussed in relation to UV exposure. The use of antioxidants is an effective approach to prevent symptoms related to photo-induced aging of the skin. In this review, the mechanisms of ROS generation and ROS elimination in the body are summarized. The effects of ROS generated in the skin and the roles of ROS in altering the skin are also discussed. In addition, the effects of representative antioxidants on the skin are summarized with a focus on skin aging.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Babior B.M.
        • Lambeth J.D.
        • Nauseef W.
        The neutrophil NADPH oxidase.
        Arch Biochem Biophys. 2002; 397: 342-344
        • Granger D.N.
        Role of xanthine oxidase and granulocytes in ischemia–reperfusion injury.
        Am J Physiol. 1988; 255: 1269-1275
        • Fantel A.G.
        • Person R.E.
        • Tumbic R.W.
        • Nguyen T.D.
        • Mackler B.
        Studies of mitochondria in oxidative embryotoxicity.
        Teratology. 1995; 52: 190-195
        • Nathan C.F.
        • Hibbs Jr., J.B.
        Role of nitric oxide synthesis in macrophage antimicrobial activity.
        Curr Opin Immunol. 1991; 3: 65-70
        • Comporti M.
        Lipid peroxidation and biogenic aldehydes: from the identification of 4-hydroxynonenal to further achievements in biopathology.
        Free Radic Res. 1998; 28: 623-635
        • McCord J.M.
        • Fridovich I.
        Superoxide dismutase: the first twenty years (1968–1988).
        Free Radic Biol Med. 1988; 5: 363-369
        • Chelikani P.
        • Fita I.
        • Loewen P.C.
        Diversity of structures and properties among catalases.
        Cell Mol Life Sci. 1988; 61: 192-208
        • Muller F.L.
        • Lustgarten M.S.
        • Jang Y.
        • Richardson A.
        • Van Remmen H.
        Trends in oxidative aging theories.
        Free Radic Biol Med. 2007; 43: 477-503
        • Mustacich D.
        • Powis G.
        Thioredoxin reductase.
        Biochem J. 2000; 346: 1-8
        • Sato M.
        • Bremner I.
        Oxygen free radicals and metallothionein.
        Free Radic Biol Med. 1993; 14: 325-337
        • Zhang D.D.
        Mechanistic studies of the Nrf2-Keap1 signaling pathway.
        Drug Metab Rev. 2006; 38: 769-789
        • Ishii T.
        • Itoh K.
        • Takahashi S.
        • Sato H.
        • Yanagawa T.
        • Katoh Y.
        • et al.
        Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages.
        J Biol Chem. 2000; 275: 16023-16029
        • Moinova H.R.
        • Mulcahy R.T.
        Up-regulation of the human gamma-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element.
        Biochem Biophys Res Commun. 1999; 261: 661-668
        • Banning A.
        • Deubel S.
        • Kluth D.
        • Zhou Z.
        • Brigelius-Flohe R.
        The GI-GPx gene is a target for Nrf2.
        Mol Cell Biol. 2005; 25: 4914-4923
        • Kim Y.C.
        • Masutani H.
        • Yamaguchi Y.
        • Itoh K.
        • Yamamoto M.
        • Yodoi J.
        Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors.
        J Biol Chem. 2001; 276: 18399-18406
        • Sakurai A.
        • Nishimoto M.
        • Himeno S.
        • Imura N.
        • Tsujimoto M.
        • Kunimoto M.
        • et al.
        Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2.
        J Cell Physiol. 2005; 203: 529-537
        • Yueh M.F.
        • Tukey R.H.
        Nrf2-Keap1 signaling pathway regulates human UGT1A1 expression in vitro and in transgenic UGT1 mice.
        J Biol Chem. 2007; 282: 8749-8758
        • Vollrath V.
        • Wielandt A.M.
        • Iruretagoyena M.
        • Chianale J.
        Role of Nrf2 in the regulation of the Mrp2 (ABCC2) gene.
        Biochem J. 2006; 395: 599-609
        • Maher J.M.
        • Cheng X.
        • Slitt A.L.
        • Dieter M.Z.
        • Klaassen C.D.
        Induction of the multidrug resistance associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver.
        Drug Metab Dispos. 2005; 33: 956-962
        • Ishii T.
        • Yanagawa T.
        Stress-induced peroxiredoxins.
        Subcell Biochem. 2007; 44: 375-384
        • Masaki H.
        • Atsumi T.
        • Sakurai H.
        Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation.
        Biochem Biophys Res Commun. 1995; 206: 474-479
        • Jurkiewicz B.A.
        • Buettner G.R.
        EPR detection of free radicals in UV-irradiated skin: mouse versus human.
        Photochem Photobiol. 1996; 64: 918-922
        • Valencia A.
        • Kochevar I.E.
        Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes.
        J Invest Dermatol. 2008; 128: 214-222
        • Masaki H.
        • Okano Y.
        • Sakurai H.
        Generation of active oxygen species from advanced glycation end-products (AGEs) during ultraviolet light A (UVA) irradiation and a possible mechanism for cell damaging.
        Biochim Biophys Acta. 1999; 1428: 45-56
        • Ryu A.
        • Arakane K.
        • Koide C.
        • Arai H.
        • Nagano T.
        Squalene as a target molecule in skin hyperpigmentation caused by singlet oxygen.
        Biol Pharm Bull. 2009; 32: 1504-1509
        • Warren J.B.
        Nitric oxide and human skin blood flow responses to acetylcholine and ultraviolet light.
        FASEB J. 1994; 8: 247-251
        • Ahn S.M.
        • Yoon H.Y.
        • Lee B.G.
        • Park K.C.
        • Chung J.H.
        • Moon C.H.
        • et al.
        Fructose-1,6-diphosphate attenuates prostaglandin E2 production and cyclo-oxygenase-2 expression in UVB-irradiated HaCaT keratinocytes.
        Br J Pharmacol. 2002; 137: 497-503
        • Rhodes L.E.
        • Gledhill K.
        • Masoodi M.
        • Haylett A.K.
        • Brownrigg M.
        • Thody A.J.
        • et al.
        The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases.
        FASEB J. 2009; 23: 3947-3956
        • Chiba K.
        • Kawakami K.
        • Sone T.
        • Onoue M.
        Characteristics of skin wrinkling and dermal changes induced by repeated application of squalene monohydroperoxide to hairless mouse skin.
        Skin Pharmacol Appl Skin Physiol. 2003; 16: 242-251
        • Fujita H.
        • Hirao T.
        • Takahashi M.
        A simple and non-invasive visualization for assessment of carbonylated protein in the stratum corneum.
        Skin Res Technol. 2007; 13: 84-90
        • Kobayashi Y.
        • Iwai I.
        • Akutsu N.
        • Hirao T.
        Increased carbonyl protein levels in the stratum corneum of the face during winter.
        Int J Cosmet Sci. 2008; 30: 35-40
        • Niwa Y.
        • Sumi H.
        • Kawahira K.
        • Terashima T.
        • Nakamura T.
        • Akamatsu H.
        Protein oxidative damage in the stratum corneum: evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan.
        Br J Dermatol. 2003; 149: 248-254
        • Akitomo Y.
        • Akamatsu H.
        • Okano Y.
        • Masaki H.
        • Horio T.
        Effects of UV irradiation on the sebaceous gland and sebum secretion in hamsters.
        J Dermatol Sci. 2003; 31: 151-159
        • Grange P.A.
        • Chéreau C.
        • Raingeaud J.
        • Nicco C.
        • Weill B.
        • Dupin N.
        • et al.
        Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin.
        PLoS Pathog. 2009; ([Epub July 24])
        • Schallreuter K.U.
        • Moore J.
        • Wood J.M.
        • Beazley W.D.
        • Gaze D.C.
        • Tobin D.J.
        • et al.
        In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase.
        J Invest Dermatol Symp Proc. 1999; 4: 91-96
        • Sravani P.V.
        • Babu N.K.
        • Gopal K.V.
        • Rao G.R.
        • Rao A.R.
        • Moorthy B.
        • et al.
        Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin.
        Ind J Dermatol Venereol Leprol. 2009; 75: 268-271
        • Pelle E.
        • Mammone T.
        • Maes D.
        • Frenkel K.
        Keratinocytes act as a source of reactive oxygen species by transferring hydrogen peroxide to melanocytes.
        J Invest Dermatol. 2005; 124: 793-797
        • Roméro-Graillet C.
        • Aberdam E.
        • Clément M.
        • Ortonne J.P.
        • Ballotti R.
        Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis.
        J Clin Invest. 1997; 99: 635-642
        • Sasaki M.
        • Horikoshi T.
        • Uchiwa H.
        • Miyachi Y.
        Up-regulation of tyrosinase gene by nitric oxide in human melanocytes.
        Pigment Cell Res. 2000; 13: 248-252
        • Chakraborty A.K.
        • Funasaka Y.
        • Slominski A.
        • Ermak G.
        • Hwang J.
        • Pawelek J.M.
        • et al.
        Production and release of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture: regulation by ultraviolet B.
        Biochim Biophys Acta. 1996; 1313: 130-138
        • Sasaki M.
        • Kizawa K.
        • Igarashi S.
        • Horikoshi T.
        • Uchiwa H.
        • Miyachi Y.
        Suppression of melanogenesis by induction of endogenous intracellular metallothionein in human melanocytes.
        Exp Dermatol. 2004; 13: 465-471
        • Schallreuter K.U.
        • Wazir U.
        • Kothari S.
        • Gibbons N.C.
        • Moore J.
        • Wood J.M.
        Human phenylalanine hydroxylase is activated by H2O2: a novel mechanism for increasing the l-tyrosine supply for melanogenesis in melanocytes.
        Biochem Biophys Res Commun. 2004; 322: 88-92
        • Scharffetter-Kochanek K.
        • Wlaschek M.
        • Briviba K.
        • Sies H.
        Singlet oxygen induces collagenase expression in human skin fibroblasts.
        FEBS Lett. 1993; 331: 304-306
        • Wlaschek M.
        • Heinen G.
        • Poswig A.
        • Schwarz A.
        • Krieg T.
        • Scharffetter-Kochanek
        UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6.
        Photochem Photobiol. 1994; 59: 550-556
        • Ohuchida M.
        • Sasaguri Y.
        • Morimatsu M.
        • Nagase H.
        • Yagi K.
        Effect of linoleic acid hydroperoxide on production of matrix metalloproteinases by human skin fibroblasts.
        Biochem Int. 1991; 25: 447-452
        • Denu J.M.
        • Tanner K.G.
        Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
        Biochemistry. 1998; 37: 5633-5642
        • Shin M.H.
        • Rhie G.E.
        • Kim Y.K.
        • Park C.H.
        • Cho K.H.
        • Kim K.H.
        • et al.
        H2O2 accumulation by catalase reduction changes MAP kinase signaling in aged human skin in vivo.
        J Invest Dermatol. 2005; 125: 221-229
        • Chung K.-Y.
        • Agarwal A.
        • Uitto J.
        • Mauviel A.
        An AP-1 binding sequence is essential for regulation of the human a2(I) collagen (COL1A2) promoter activity by transforming growth factor-b.
        J Biol Chem. 1996; 271: 3272-3278
        • Tanaka H.
        • Okada T.
        • Konishi H.
        • Tsuji T.
        The effect of reactive oxygen species on the biosynthesis of collagen and glycosaminoglycans in cultured human dermal fibroblasts.
        Arch Dermatol Res. 1993; 285: 352-355
        • Buechner N.
        • Schroeder P.
        • Jakob S.
        • Kunze K.
        • Maresch T.
        • Calles C.
        • et al.
        Changes of MMP-1 and collagen type Ialpha1 by UVA, UVB and IRA are differentially regulated by Trx-1.
        Exp Gerontol. 2008; 43: 633-637
        • Sambo P.
        • Baroni S.S.
        • Luchetti M.
        • Paroncini P.
        • Dusi S.
        • Orlandini G.
        • et al.
        Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway.
        Arthritis Rheum. 2001; 44: 2653-2664
        • Obayashi K.
        • Akamatsu H.
        • Okano Y.
        • Matsunaga K.
        • Masaki H.
        Exogenous nitric oxide enhances the synthesis of type I collagen and heat shock protein 47 by normal human dermal fibroblasts.
        J Dermatol Sci. 2006; 41: 121-126
        • Myllyla R.
        • Majamaa K.
        • Gunzler V.
        • Hanauske-Abel H.M.
        • Kivirikko K.I.
        Ascorbate is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase.
        J Biol Chem. 1984; 259: 5403-5405
        • Boyce S.T.
        • Supp A.P.
        • Swope V.B.
        • Warden G.D.
        Vitamin C regulates keratinocyte viability, epidermal barrier, and basement membrane in vitro, and reduces wound contraction after grafting of cultured skin substitutes.
        J Invest Dermatol. 2002; 118: 565-572
        • Heller R.
        • Unbehaun A.
        • Schellenberg B.
        • Mayer B.
        • Werner-Felmayer G.
        • Werner E.R.
        l-Ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin.
        J Biol Chem. 2001; 276: 40-47
        • Ohshima H.
        • Mizukoshi K.
        • Oyobikawa M.
        • Matsumoto K.
        • Takiwaki H.
        • Kanto H.
        • et al.
        Effects of vitamin C on dark circles of the lower eyelids: quantitative evaluation using image analysis and echogram.
        Skin Res Technol. 2009; 15: 214-217
        • Ebihara M.
        • Akiyama M.
        • Ohnishi Y.
        • Tajima S.
        • Komata K.
        • Mitsui Y.
        Iontophoresis promotes percutaneous absorption of L-ascorbic acid in rat skin.
        J Dermatol Sci. 2003; 32: 217-222
        • Kameyama K.
        • Sakai C.
        • Kondoh S.
        • Yonemoto K.
        • Nishiyama S.
        • Tagawa M.
        • et al.
        Inhibitory effect of magnesium L-ascorbyl-2-phosphate (VC-PMG) on melanogenesis in vitro and in vivo.
        J Am Acad Dermatol. 1996; 34: 29-33
        • Miyai E.
        • Yanagida M.
        • Akiyama J.
        • Yamamoto I.
        Ascorbic acid 2-O-alpha-glucoside, a stable form of ascorbic acid, rescues human keratinocyte cell line, SCC, from cytotoxicity of ultraviolet light B.
        Biol Pharm Bull. 1996; 19: 984-987
        • Zhou X.
        • Tai A.
        • Yamamoto I.
        Enhancement of neurite outgrowth in PC12 cells stimulated with cyclic AMP and NGF by 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), novel lipophilic ascorbate derivatives.
        Biol Pharm Bull. 2003; 26: 341-346
        • Ochiai Y.
        • Kaburagi S.
        • Obayashi K.
        • Ujiie N.
        • Hashimoto S.
        • Okano Y.
        • et al.
        A new lipophilic pro-vitamin C, tetra-isopalmitoyl ascorbic acid (VC-IP), prevents UV-induced skin pigmentation through its anti-oxidative properties.
        J Dermatol Sci. 2006; 44: 37-44
        • Masaki H.
        • Okano Y.
        • Ochiai Y.
        • Obayashi K.
        • Akamatsu H.
        • Sakurai H.
        alpha-tocopherol increases the intracellular glutathione level in HaCaT keratinocytes.
        Free Radic Res. 2002; 36: 705-709
        • Wei H.
        • Frenkel K.
        Relationship of oxidative events and DNA oxidation in SENCAR mice to in vivo promoting activity of phorbol ester-type tumor promoters.
        Carcinogenesis. 1993; 14: 1195-1201
        • Rahman S.
        • Bhatia K.
        • Khan A.Q.
        • Kaur M.
        • Ahmad F.
        • Rashid H.
        • et al.
        Topically applied vitamin E prevents massive cutaneous inflammatory and oxidative stress responses induced by double application of 12-O-tetradecanoylphorbol-13-acetate (TPA) in mice.
        Chem Biol Interact. 2008; 172: 195-205
        • Wu S.
        • Gao J.
        • Dinh Q.T.
        • Chen C.
        • Fimmel S.
        IL-8 production and AP-1 transactivation induced by UVA in human keratinocytes: roles of d-alpha-tocopherol.
        Mol Immunol. 2008; 45: 2288-2296
        • Ricciarelli R.
        • Maroni P.
        • Ozer N.
        • Zingg J.M.
        • Azzi A.
        Age-dependent increase of collagenase expression can be reduced by alpha-tocopherol via protein kinase C inhibition.
        Free Radic Biol Med. 1999; 27: 729-737
        • Yoshida E.
        • Watanabe T.
        • Takata J.
        • Yamazaki A.
        • Karube Y.
        • Kobayashi S.
        Topical application of a novel, hydrophilic gamma-tocopherol derivative reduces photo-inflammation in mice skin.
        J Invest Dermatol. 2006; 126: 1447-1449
        • Kamei Y.
        • Otsuka Y.
        • Abe K.
        Comparison of the inhibitory effects of vitamin E analogues on melanogenesis in mouse B16 melanoma cells.
        Cytotechnology. 2009; 59: 183-190
        • Cooney R.V.
        • Franke A.A.
        • Harwood P.J.
        • Hatch-Pigott V.
        • Custer L.J.
        • Mordan L.J.
        Tocopherol detoxification of nitrogen dioxide: superiority to a-tocopherol detoxification of nitrogen oxide.
        Proc Natl Acad Sci USA. 1993; 90: 1711-1715
        • Camera E.
        • Mastrofrancesco A.
        • Fabbri C.
        • Daubrawa F.
        • Picardo M.
        • Sies H.
        • et al.
        Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes.
        Exp Dermatol. 2009; 18: 222-231
        • Darvin M.
        • Patzelt A.
        • Gehse S.
        • Schanzer S.
        • Benderoth C.
        • Sterry W.
        • et al.
        Cutaneous concentration of lycopene correlates significantly with the roughness of the skin.
        Eur J Pharm Biopharm. 2008; 69: 943-947
        • Inui M.
        • Ooe M.
        • Fujii K.
        • Matsunaka H.
        • Yoshida M.
        • Ichihashi M.
        Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo.
        Biofactors. 2008; 32: 237-243
        • Muta-Takada K.
        • Terada T.
        • Yamanishi H.
        • Ashida Y.
        • Inomata S.
        • Nishiyama T.
        • et al.
        Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells.
        Biofactors. 2009; 35: 435-441
        • Obayashi K.
        • Kurihara K.
        • Okano Y.
        • Masaki H.
        • Yarosh D.B.
        l-Ergothioneine scavenges superoxide and singlet oxygen and suppresses TNF-alpha and MMP-1 expression in UV-irradiated human dermal fibroblasts.
        J Cosmet Sci. 2005; 56: 17-27
        • Ochiai Y.
        • Kaburagi S.
        • Okano Y.
        • Masaki H.
        • Ichihashi M.
        • Funasaka Y.
        • et al.
        A Zn(II)-glycine complex suppresses UVB-induced melanin production by stimulating metallothionein expression.
        Int J Cosmet Sci. 2008; 30: 105-112
        • Jeon H.Y.
        • Kim J.K.
        • Kim W.G.
        • Lee S.J.
        Effects of oral epigallocatechin gallate supplementation on the minimal erythema dose and UV-induced skin damage.
        Skin Pharmacol Physiol. 2009; 22: 137-141
        • Bae J.Y.
        • Choi J.S.
        • Choi Y.J.
        • Shin S.Y.
        • Kang S.W.
        • Han S.J.
        • et al.
        (−)Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: involvement of mitogen-activated protein kinase.
        Food Chem Toxicol. 2008; 46: 1298-1307
        • Borra M.T.
        • Smith B.C.
        • Denu J.M.
        Mechanism of human SIRT1 activation by resveratrol.
        J Biol Chem. 2005; 280: 17187-17195
        • Park K.
        • Lee J.H.
        Protective effects of resveratrol on UVB-irradiated HaCaT cells through attenuation of the caspase pathway.
        Oncol Rep. 2008; 19: 413-417
        • Cao C.
        • Lu S.
        • Kivlin R.
        • Wallin B.
        • Card E.
        • Bagdasarian A.
        • et al.
        SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes.
        J Cell Mol Med. 2009; 13: 3632-3643
        • Newton R.A.
        • Cook A.L.
        • Roberts D.W.
        • Leonard J.H.
        • Sturm R.A.
        Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes.
        J Invest Dermatol. 2007; 127: 2216-2227

      Biography

      Hitoshi Masaki is graduated from postgraduate course of Kobe University and received his PhD degree in 1995 from Kyoto Pharmaceutical University. He is working in cosmetic industry for 25 years. His research interests include skin barrier, pigmentation, and skin aging underlying photobiology and oxidation. He received the scientific award of international federation of Societies of Cosmetic Chemists Melbourne conference in 2009. He is council member of following societies: Japanese Cosmetic Industry Association, Society of Cosmetic Chemistry Japan, and Society of Japanese Cosmetic Science. His current position is president of Nikkol group Cosmos Technical Center Co. Ltd.