Advertisement
Research Article| Volume 65, ISSUE 3, P170-178, March 2012

Mcl-1 determines the imiquimod-induced apoptosis but not imiquimod-induced autophagy in skin cancer cells

Published:February 06, 2012DOI:https://doi.org/10.1016/j.jdermsci.2011.11.001

      Abstract

      Background

      Imiquimod had been shown to induce apoptosis and autophagy in several skin cancer cells, especially basal cell carcinoma (BCC) cells.

      Objective

      We evaluate the molecular mechanisms of imiquimod-induced apoptosis and autophagy in skin cancer cell lines.

      Methods

      The Mcl-1, Bcl-2 and Bcl-xL proteins were determined by immunoblotting. The Mcl-1 mRNA level was examined by RT-PCR and real-time PCR. The mechanisms of imiquimod-induced decrease in Mcl-1 protein were evaluated by addition of cycloheximide, MG132 proteasome inhibitor or pan-caspase inhibitor. The phosphorylation of eIF4E, 4E-BP1 and eEF2 in imiquimod treated cells were examined by immunoblotting. The imiquimod-induced apoptosis and autophagy were evaluated in Mcl-1-overexpressing cells by XTT test, mitochondrial membrane potential measurement, DNA content assay, LC3 immunoblotting, EGFP-LC3 puncta formation and quantification of acidic vesicular organelle with acridine orange staining.

      Results

      The decrease in the Mcl-1 protein level was faster and stronger than the decrease in Bcl-2 and Bcl-xL in imiquimod-treated skin cancer cells. The imiquimod-induced decrease in Mcl-1 protein was not caused by blocked transcription or the promotion of degradation but was associated with inactivation of translation factors in BCC cells. The Mcl-1-overexpressing BCC cells were more resistant to intrinsic cellular apoptosis than control BCC cells during imiquimod treatment. Mcl-1 overexpression in BCC cells resulted in the basal activation of autophagy but did not modulate imiquimod-induced autophagy or rescue imiquimod-induced autophagic cell death in BCC cells.

      Conclusions

      Imiquimod may rapidly downregulate Mcl-1 protein levels by inhibiting translation in skin cancer cells. Mcl-1 may act to protect against apoptosis but not autophagy and autophagic cell death during imiquimod treatment in skin cancer cells.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams J.M.
        Ways of dying: multiple pathways to apoptosis.
        Genes Dev. 2003; 17: 2481-2495
        • Mizushima N.
        Autophagy: process and function.
        Genes Dev. 2007; 21: 2861-2873
        • Reed J.C.
        Apoptosis-targeted therapies for cancer.
        Cancer Cell. 2003; 3: 17-22
        • Lear J.T.
        • Harvey I.
        • de Berker D.
        • Strange R.C.
        • Fryer A.A.
        Basal cell carcinoma.
        J R Soc Med. 1998; 91: 585-588
        • Novak N.
        • Yu C.F.
        • Bieber T.
        • Allam J.P.
        Toll-like receptor 7 agonists and skin.
        Drug News Perspect. 2008; 21: 158-165
        • Gorden K.B.
        • Gorski K.S.
        • Gibson S.J.
        • Kedl R.M.
        • Kieper W.C.
        • Qiu X.
        • et al.
        Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8.
        J Immunol. 2005; 174: 1259-1268
        • Schön M.
        • Bong A.B.
        • Drewniok C.
        • Herz J.
        • Geilen C.C.
        • Reifenberger J.
        • et al.
        Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod.
        J Natl Cancer Inst. 2003; 95: 1138-1149
        • Sidbury R.
        • Neuschler N.
        • Neuschler E.
        • Sun P.
        • Wang X.Q.
        • Miller R.
        • et al.
        Topically applied imiquimod inhibits vascular tumor growth in vivo.
        J Invest Dermatol. 2003; 121: 1205-1209
        • Smith E.B.
        • Schwartz M.
        • Kawamoto H.
        • You X.
        • Hwang D.
        • Liu H.
        • et al.
        Antitumor effects of imidazoquinolines in urothelial cell carcinoma of the bladder.
        J Urol. 2007; 177: 2347-2351
        • Huang S.W.
        • Liu K.T.
        • Chang C.C.
        • Chen Y.J.
        • Wu C.Y.
        • Tsai J.J.
        • et al.
        Imiquimod simultaneously induces autophagy and apoptosis in human basal cell carcinoma cells.
        Br J Dermatol. 2010; 163: 310-320
        • Kozopas K.M.
        • Yang T.
        • Buchan H.L.
        • Zhou P.
        • Craig R.W.
        MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2.
        Proc Natl Acad Sci USA. 1993; 90: 3516-3520
        • Yang T.
        • Kozopas K.M.
        • Craig R.W.
        The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2.
        J Cell Biol. 1995; 128: 1173-1184
        • Yang-Yen H.F.
        Mcl-1: a highly regulated cell death and survival controller.
        J Biomed Sci. 2006; 13: 201-204
        • Mott J.L.
        • Kobayashi S.
        • Bronk S.F.
        • Gores G.J.
        mir-29 regulates Mcl-1 protein expression and apoptosis.
        Oncogene. 2007; 26: 6133-6140
        • Subramaniam D.
        • Natarajan G.
        • Ramalingam S.
        • Ramachandran I.
        • May R.
        • Queimado L.
        • et al.
        Translation inhibition during cell cycle arrest and apoptosis: Mcl-1 is a novel target for RNA binding protein CUGBP2.
        Am J Physiol Gastrointest Liver Physiol. 2008; 294: G1025-G1032
        • Yang T.
        • Buchan H.L.
        • Townsend K.J.
        • Craig R.W.
        MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation.
        J Cell Physiol. 1996; 166: 523-536
        • Thallinger C.
        • Wolschek M.F.
        • Wacheck V.
        • Maierhofer H.
        • Gunsberg P.
        • Polterauer P.
        • et al.
        Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model.
        J Invest Dermatol. 2003; 120: 1081-1086
        • Jee S.H.
        • Chiu H.C.
        • Tsai T.F.
        • Tsai W.L.
        • Liao Y.H.
        • Chu C.Y.
        • et al.
        The phosphotidyl inositol 3-kinase/Akt signal pathway is involved in interleukin-6-mediated Mcl-1 upregulation and anti-apoptosis activity in basal cell carcinoma cells.
        J Invest Dermatol. 2002; 119: 1121-1127
        • Shieh J.J.
        • Liu K.T.
        • Huang S.W.
        • Chen Y.J.
        • Hsieh T.Y.
        Modification of alternative splicing of Mcl-1 pre-mRNA using antisense morpholino oligonucleotides induces apoptosis in basal cell carcinoma cells.
        J Invest Dermatol. 2009; 129: 2497-2506
        • Yen H.T.
        • Chiang L.C.
        • Wen K.H.
        • Tsai C.C.
        • Yu C.L.
        • Yu H.S.
        The expression of cytokines by an established basal cell carcinoma cell line (BCC-1/KMC) compared with cultured normal keratinocytes.
        Arch Dermatol Res. 1996; 288: 157-161
        • Jackson W.T.
        • Giddings Jr., T.H.
        • Taylor M.P.
        • Mulinyawe S.
        • Rabinovitch M.
        • Kopito R.R.
        • et al.
        Subversion of cellular autophagosomal machinery by RNA viruses.
        PLoS Biol. 2005; 3: e156
        • Abdelsayed R.A.
        • Guijarro-Rojas M.
        • Ibrahim N.A.
        • Sangueza O.P.
        Immunohistochemical evaluation of basal cell carcinoma and trichepithelioma using Bcl-2, Ki67, PCNA and P53.
        J Cutan Pathol. 2000; 27: 169-175
        • De Giorgi V.
        • Salvini C.
        • Chiarugi A.
        • Paglierani M.
        • Maio V.
        • Nicoletti P.
        • et al.
        In vivo characterization of the inflammatory infiltrate and apoptotic status in imiquimod-treated basal cell carcinoma.
        Int J Dermatol. 2009; 48: 312-321
        • Schön M.P.
        • Wienrich B.G.
        • Drewniok C.
        • Bong A.B.
        • Eberle J.
        • Geilen C.C.
        • et al.
        Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod.
        J Invest Dermatol. 2004; 122: 1266-1276
        • Maurer U.
        • Charvet C.
        • Wagman A.S.
        • Dejardin E.
        • Green D.R.
        Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1.
        Mol Cell. 2006; 21: 749-760
        • Herrant M.
        • Jacquel A.
        • Marchetti S.
        • Belhacene N.
        • Colosetti P.
        • Luciano F.
        • et al.
        Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis.
        Oncogene. 2004; 23: 7863-7873
        • Adams K.W.
        • Cooper G.M.
        Rapid turnover of mcl-1 couples translation to cell survival and apoptosis.
        J Biol Chem. 2007; 282: 6192-6200
        • Sonenberg N.
        • Hinnebusch A.G.
        Regulation of translation initiation in eukaryotes: mechanisms and biological targets.
        Cell. 2009; 136: 731-745
        • Gingras A.C.
        • Raught B.
        • Gygi S.P.
        • Niedzwiecka A.
        • Miron M.
        • Burley S.K.
        • et al.
        Hierarchical phosphorylation of the translation inhibitor 4E-BP1.
        Genes Dev. 2001; 15: 2852-2864
        • Jorgensen R.
        • Merrill A.R.
        • Andersen G.R.
        The life and death of translation elongation factor 2.
        Biochem Soc Trans. 2006; 34: 1-6
        • Clohessy J.G.
        • Zhuang J.
        • de Boer J.
        • Gil-Gomez G.
        • Brady H.J.
        Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis.
        J Biol Chem. 2006; 281: 5750-5759
        • Delgado M.A.
        • Elmaoued R.A.
        • Davis A.S.
        • Kyei G.
        • Deretic V.
        Toll-like receptors control autophagy.
        EMBO J. 2008; 27: 1110-1121
        • Yi J.Y.
        • Jung Y.J.
        • Choi S.S.
        • Hwang J.
        • Chung E.
        Autophagy-mediated anti-tumoral activity of imiquimod in Caco-2 cells.
        Biochem Biophys Res Commun. 2009; 386: 455-458
        • Hemmi H.
        • Kaisho T.
        • Takeuchi O.
        • Sato S.
        • Sanjo H.
        • Hoshino K.
        • et al.
        Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway.
        Nat Immunol. 2002; 3: 196-200
        • Thomas L.W.
        • Lam C.
        • Edwards S.W.
        Mcl-1; the molecular regulation of protein function.
        FEBS Lett. 2010; 584: 2981-2989
        • Akgul C.
        • Turner P.C.
        • White M.R.
        • Edwards S.W.
        Functional analysis of the human MCL-1 gene.
        Cell Mol Life Sci. 2000; 57: 684-691
        • Moshynska O.
        • Sankaran K.
        • Pahwa P.
        • Saxena A.
        Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia.
        J Natl Cancer Inst. 2004; 96: 673-682
        • Ricci M.S.
        • Kim S.H.
        • Ogi K.
        • Plastaras J.P.
        • Ling J.
        • Wang W.
        • et al.
        Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death.
        Cancer Cell. 2007; 12: 66-80
        • Megyeri K.
        • Au W.C.
        • Rosztoczy I.
        • Raj N.B.
        • Miller R.L.
        • Tomai M.A.
        • et al.
        Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways.
        Mol Cell Biol. 1995; 15: 2207-2218
        • Schon M.P.
        • Schon M.
        TLR7 and TLR8 as targets in cancer therapy.
        Oncogene. 2008; 27: 190-199
        • Chen L.
        • Willis S.N.
        • Wei A.
        • Smith B.J.
        • Fletcher J.I.
        • Hinds M.G.
        • et al.
        Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function.
        Mol Cell. 2005; 17: 393-403
        • Czabotar P.E.
        • Lee E.F.
        • van Delft M.F.
        • Day C.L.
        • Smith B.J.
        • Huang D.C.
        • et al.
        Structural insights into the degradation of Mcl-1 induced by BH3 domains.
        Proc Natl Acad Sci USA. 2007; 104: 6217-6222
        • Warr M.R.
        • Acoca S.
        • Liu Z.
        • Germain M.
        • Watson M.
        • Blanchette M.
        • et al.
        BH3-ligand regulates access of MCL-1 to its E3 ligase.
        FEBS Lett. 2005; 579: 5603-5608
        • Mei Y.
        • Du W.
        • Yang Y.
        • Wu M.
        Puma(*)Mcl-1 interaction is not sufficient to prevent rapid degradation of Mcl-1.
        Oncogene. 2005; 24: 7224-7237
        • Mills J.R.
        • Hippo Y.
        • Robert F.
        • Chen S.M.
        • Malina A.
        • Lin C.J.
        • et al.
        mTORC1 promotes survival through translational control of Mcl-1.
        Proc Natl Acad Sci USA. 2008; 105: 10853-10858
        • Rahmani M.
        • Davis E.M.
        • Bauer C.
        • Dent P.
        • Grant S.
        Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation.
        J Biol Chem. 2005; 280: 35217-35227
        • Yecies D.
        • Carlson N.E.
        • Deng J.
        • Letai A.
        Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1.
        Blood. 2010; 115: 3304-3313
        • Erlich S.
        • Mizrachy L.
        • Segev O.
        • Lindenboim L.
        • Zmira O.
        • Adi-Harel S.
        • et al.
        Differential interactions between Beclin 1 and Bcl-2 family members.
        Autophagy. 2007; 3: 561-568
        • Zeng X.
        • Overmeyer J.H.
        • Maltese W.A.
        Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking.
        J Cell Sci. 2006; 119: 259-270
        • Shimizu S.
        • Kanaseki T.
        • Mizushima N.
        • Mizuta T.
        • Arakawa-Kobayashi S.
        • Thompson C.B.
        • et al.
        Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes.
        Nat Cell Biol. 2004; 6: 1221-1228
        • Priault M.
        • Hue E.
        • Marhuenda F.
        • Pilet P.
        • Oliver L.
        • Vallette F.M.
        Differential dependence on Beclin 1 for the regulation of pro-survival autophagy by Bcl-2 and Bcl-xL in HCT116 colorectal cancer cells.
        PLoS One. 2010; 5: e8755