Advertisement
Research Article| Volume 65, ISSUE 3, P196-206, March 2012

Knocking-in the R142C mutation in transglutaminase 1 disrupts the stratum corneum barrier and postnatal survival of mice

      Abstract

      Background

      Mutations in the gene encoding transglutaminase 1 (TG1) are responsible for various types of autosomal recessive congenital ichthyosis (ARCI), such as lamellar ichthyosis (LI), congenital ichthyosiform erythroderma (CIE) and some minor variants of ARCI. A point mutation of R143C in the β-sandwich domain of TG1 has been often identified in patients with LI or CIE.

      Objective

      To elucidate the effect of that point mutation on skin barrier structures and functions, we generated mice with a point mutation of R142C, which corresponds to the R143C mutation in human TG1.

      Methods

      A mouse line with the R142C point mutation in TG1 was established using a gene targeting technique and the Cre-loxP system. The skin phenotypes were analyzed in homozygous mutant Tgm1R142C/R142C mice.

      Results

      In the skin of Tgm1R142C/R142C mice, expression of the mutant transcripts was comparable with wild-type or Tgm1+/R142C mice. However, the amount of mutated protein in the skin was markedly decreased in Tgm1R142C/R142C mice, and the TG1 activity of Tgm1R142C/R142C keratinocytes was almost lost. Tgm1R142C/R142C mice exhibited morphological and functional skin barrier defects and neonatal lethality. The stratum corneum of those mice lacked cornified envelopes, and loricrin, the major structural component, failed to assemble at the corneocyte cell periphery. Tgm1R142C/R142C mice showed a marked increase in transepidermal water loss and their skin was easily permeable to toluidine blue dye. The intercellular lipid lamellar structures of the stratum corneum were irregular and the 13-nm periodic X-ray diffractions from the stratum corneum lipid molecules were lost in vivo.

      Conclusion

      From these results, we suggest that the R142C mutation of TG1 reduces the enzyme stability which is indispensable for development of the stratum corneum and skin barrier function and for postnatal survival of mice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Iismaa S.E.
        • Mearns B.M.
        • Lorand L.
        • Graham R.M.
        Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders.
        Physiol Rev. 2009; 89: 991-1023
        • Lorand L.
        • Graham R.M.
        Transglutaminases: crosslinking enzymes with pleiotropic functions.
        Nat Rev Mol Cell Biol. 2003; 4: 140-156
        • Esposito C.
        • Caputo I.
        Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance.
        FEBS J. 2005; 272: 615-631
        • Huber M.
        • Rettler I.
        • Bernasconi K.
        • Frenk E.
        • Lavrijsen S.P.
        • Ponec M.
        • et al.
        Mutations of keratinocyte transglutaminase in lamellar ichthyosis.
        Science. 1995; 267: 525-528
        • Russell L.J.
        • DiGiovanna J.J.
        • Rogers G.R.
        • Steinert P.M.
        • Hashem N.
        • Compton J.G.
        • et al.
        Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis.
        Nat Genet. 1995; 9: 279-283
        • Oji V.
        • Tadini G.
        • Akiyama M.
        • Blanchet Bardon C.
        • Bodemer C.
        • Bourrat E.
        • et al.
        Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Soreze 2009.
        J Am Acad Dermatol. 2010; 63: 607-641
        • Yamada K.
        • Matsuki M.
        • Morishima Y.
        • Ueda E.
        • Tabata K.
        • Yasuno H.
        • et al.
        Activation of the human transglutaminase 1 promoter in transgenic mice: terminal differentiation-specific expression of the TGM1-lacZ transgene in keratinized stratified squamous epithelia.
        Hum Mol Genet. 1997; 6: 2223-2231
        • Candi E.
        • Schmidt R.
        • Melino G.
        The cornified envelope: a model of cell death in the skin.
        Nat Rev Mol Cell Biol. 2005; 6: 328-340
        • Matsuki M.
        • Yamashita F.
        • Ishida-Yamamoto A.
        • Yamada K.
        • Kinoshita C.
        • Fushiki S.
        • et al.
        Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase).
        Proc Natl Acad Sci USA. 1998; 95: 1044-1049
        • Jeon S.
        • Djian P.
        • Green H.
        Inability of keratinocytes lacking their specific transglutaminase to form cross-linked envelopes: absence of envelopes as a simple diagnostic test for lamellar ichthyosis.
        Proc Natl Acad Sci USA. 1998; 95: 687-690
        • Behne M.
        • Uchida Y.
        • Seki T.
        • de Montellano P.O.
        • Elias P.M.
        • Holleran W.M.
        Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function.
        J Invest Dermatol. 2000; 114: 185-192
        • Nemes Z.
        • Marekov L.N.
        • Fesus L.
        • Steinert P.M.
        A novel function for transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation.
        Proc Natl Acad Sci USA. 1999; 96: 8402-8407
        • Kuramoto N.
        • Takizawa T.
        • Takizawa T.
        • Matsuki M.
        • Morioka H.
        • Robinson J.M.
        • et al.
        Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1.
        J Clin Invest. 2002; 109: 243-250
        • Laiho E.
        • Niemi K.M.
        • Ignatius J.
        • Kere J.
        • Palotie A.
        • Saarialho-Kere U.
        Clinical and morphological correlations for transglutaminase 1 gene mutations in autosomal recessive congenital ichthyosis.
        Eur J Hum Genet. 1999; 7: 625-632
        • Hennies H.C.
        • Kuster W.
        • Wiebe V.
        • Krebsova A.
        • Reis A.
        Genotype/phenotype correlation in autosomal recessive lamellar ichthyosis.
        Am J Hum Genet. 1998; 62: 1052-1061
        • Sakai K.
        • Miyazaki J.
        A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission.
        Biochem Biophys Res Commun. 1997; 237: 318-324
        • Sauer B.
        Manipulation of the transgene by site-specific recombination: use of the cre recombinase.
        Methods Enzymol. 1993; 225: 890-900
        • Yagi T.
        • Nada S.
        • Watanabe N.
        • Tamemoto H.
        • Kohmura N.
        • Ikawa Y.
        • et al.
        A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene.
        Anal Biochem. 1993; 214: 77-86
        • Wood S.A.
        • Pascoe W.S.
        • Schmidt C.
        • Kemler R.
        • Evans M.J.
        • Allen N.D.
        Simple and efficient production of embryonic stem cell-embryo chimeras by coculture.
        Proc Natl Acad Sci USA. 1993; 90: 4582-4585
        • Perez Alea M.
        • Kitamura M.
        • Martin G.
        • Thomas V.
        • Hitomi K.
        • El Alaoui S.
        Development of an isoenzyme-specific colorimetric assay for tissue transglutaminase 2 cross-linking activity.
        Anal Biochem. 2009; 389: 150-156
        • Inada R.
        • Matsuki M.
        • Yamada K.
        • Morishima Y.
        • Shen S.C.
        • Kuramoto N.
        • et al.
        Facilitated wound healing by activation of the Transglutaminase 1 gene.
        Am J Pathol. 2000; 157: 1875-1882
        • Hiiragi T.
        • Sasaki H.
        • Nagafuchi A.
        • Sabe H.
        • Shen S.C.
        • Matsuki M.
        • et al.
        Transglutaminase type 1 and its cross-linking activity are concentrated at adherens junctions in simple epithelial cells.
        J Biol Chem. 1999; 274: 34148-34154
        • Mori M.
        • Ishikawa G.
        • Takeshita T.
        • Goto T.
        • Robinson J.M.
        • Takizawa T.
        Ultrahigh-resolution immunofluorescence microscopy using ultrathin cryosections: subcellular distribution of caveolin-1alpha and CD31 in human placental endothelial cells.
        J Electron Microsc (Tokyo). 2006; 55: 107-112
        • Takizawa T.
        • Robinson J.M.
        Correlative microscopy of ultrathin cryosections in placental research.
        Methods Mol Med. 2006; 121: 351-369
        • Swartzendruber D.C.
        • Wertz P.W.
        • Kitko D.J.
        • Madison K.C.
        • Downing D.T.
        Molecular models of the intercellular lipid lamellae in mammalian stratum corneum.
        J Invest Dermatol. 1989; 92: 251-257
        • Hardman M.J.
        • Sisi P.
        • Banbury D.N.
        • Byrne C.
        Patterned acquisition of skin barrier function during development.
        Development. 1998; 125: 1541-1552
        • Ohta N.
        • Oka T.
        • Inoue K.
        • Yagi N.
        • Hatta I.
        Structural analysis of cell membrane complex of a hair fibre by micro-beam X-ray diffraction.
        J Appl Crystallogr. 2005; 38: 274-279
        • Sugimura Y.
        • Hosono M.
        • Kitamura M.
        • Tsuda T.
        • Yamanishi K.
        • Maki M.
        • et al.
        Identification of preferred substrate sequences for transglutaminase 1—development of a novel peptide that can efficiently detect cross-linking enzyme activity in the skin.
        FEBS J. 2008; 275: 5667-5677
        • Steinert P.M.
        • Kim S.Y.
        • Chung S.I.
        • Marekov L.N.
        The transglutaminase 1 enzyme is variably acylated by myristate and palmitate during differentiation in epidermal keratinocytes.
        J Biol Chem. 1996; 271: 26242-26250
        • Bouwstra J.A.
        • Gooris G.S.
        • van der Spek J.A.
        • Lavrijsen S.
        • Bras W.
        The lipid and protein structure of mouse stratum corneum: a wide and small angle diffraction study.
        Biochim Biophys Acta. 1994; 1212: 183-192
        • Ohta N.
        • Ban S.
        • Tanaka H.
        • Nakata S.
        • Hatta I.
        Swelling of intercellular lipid lamellar structure with short repeat distance in hairless mouse stratum corneum as studied by X-ray diffraction.
        Chem Phys Lipids. 2003; 123: 1-8
        • Laiho E.
        • Ignatius J.
        • Mikkola H.
        • Yee V.C.
        • Teller D.C.
        • Niemi K.M.
        • et al.
        Transglutaminase 1 mutations in autosomal recessive congenital ichthyosis: private and recurrent mutations in an isolated population.
        Am J Hum Genet. 1997; 61: 529-538
        • Boeshans K.M.
        • Mueser T.C.
        • Ahvazi B.
        A three-dimensional model of the human transglutaminase 1: insights into the understanding of lamellar ichthyosis.
        J Mol Model. 2007; 13: 233-246
        • Candi E.
        • Melino G.
        • Lahm A.
        • Ceci R.
        • Rossi A.
        • Kim I.G.
        • et al.
        Transglutaminase 1 mutations in lamellar ichthyosis. Loss of activity due to failure of activation by proteolytic processing.
        J Biol Chem. 1998; 273: 13693-13702
        • Hill J.R.
        • Wertz P.W.
        Molecular models of the intercellular lipid lamellae from epidermal stratum corneum.
        Biochim Biophys Acta. 2003; 1616: 121-126