Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: An update

Published:November 19, 2012DOI:


      Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones.


      ENU (ethyl-nitrosourea induced chemical mutagenesis), GEMs (genetically engineered mice), HF (hair follicle), Rad (radiation induced), S (spontaneous mutation), Tg (transgenic), TGF (transforming growth factor), Tm (targeted mutation)


      To read this article in full you will need to make a payment


        • Paus R.
        • Cotsarelis G.
        The biology of hair follicles.
        N Engl J Med. 1999; 341: 491-497
        • Schneider M.R.
        • Schmidt-Ullrich R.
        • Paus R.
        The hair follicle as a dynamic miniorgan.
        Curr Biol. 2009; 19: R132-R142
        • Nakamura M.
        • Sundberg J.P.
        • Paus R.
        Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: annotated tables.
        Exp Dermatol. 2001; 10: 369-390
        • Sundberg J.P.
        Handbook of mouse mutations with skin and hair abnormalities: abnormal models and biomedical tools.
        CRC Press, Boca Raton Florida1994
        • Sundberg J.P.
        • Peters J.M.
        • Paus R.
        Analysis of hair follicles in mutant laboratory mice.
        J Investig Dermatol Symp Proc. 2005; 10: 264-270
        • Paus R.
        • Müller-Röver S.
        • van der Veen C.
        • Maurer M.
        • Eichmüller S.
        • Ling G.
        • et al.
        A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis.
        J Invest Dermatol. 1999; 113: 523-532
        • Müller-Röver S.
        • Handjiski B.
        • van der Veen C.
        • Eichmüller S.
        • Foitzik K.
        • McKay I.A.
        • et al.
        A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages.
        J Invest Dermatol. 2001; 117: 3-15
        • Hebert J.M.
        • Rosenquist T.
        • Götz J.
        • Martin G.R.
        FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations.
        Cell. 1994; 78: 1017-1025
        • Schneider M.R.
        • Werner S.
        • Paus R.
        • Wolf E.
        Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology.
        Am J Pathol. 2008; 173: 14-24
        • Mikkola M.L.
        • Pispa J.
        • Pekkanen M.
        • Paulin L.
        • Nieminen P.
        • Kere J.
        • et al.
        Ectodysplasin, a protein required for epithelial morphogeneis, is a novel TNF homologue and promotes cell-matrix adhesion.
        Mech Dev. 1999; 88: 133-146
        • Headon D.J.
        • Overbeek P.A.
        Involvement of novel Tnf receptor homologue in hair follicle induction.
        Nat Genet. 1999; 22: 370-374
        • Headon D.J.
        • Emmal S.A.
        • Ferguson B.M.
        • Tucker A.S.
        • Justice M.J.
        • Sharpe P.T.
        • et al.
        Gene defect in ectodermal dysplasia implicates a death domain adapter in development.
        Nature. 2001; 414: 913-916
        • Hrabé de Angelis M.H.
        • Flaswinkel H.
        • Fuchs H.
        • Rathkolb B.
        • Soewarto D.
        • Marschall S.
        • et al.
        Genome-wide, large scale production of mutant mice by ENU mutagenesis.
        Nat Genet. 2000; 25: 444-447
        • Nolan P.M.
        • Peters J.
        • Strivens M.
        • Rogers D.
        • Hagan J.
        • Spurr N.
        • et al.
        A systemic, genome-wide, phenotype-driven, mutagenesis programme for gene function studies in the mouse.
        Nat Genet. 2000; 25: 440-443
        • Wagner T.E.
        • Hoppe P.C.
        • Jollick J.D.
        • Scholl D.R.
        • Hodinka R.L.
        • Gault J.B.
        Microinjection of rabbit β-globin gene into zygotes and its subsequent expression in adult mice and their offspring.
        Proc Natl Acad Sci USA. 1981; 78: 6376-6380
        • Schweizer J.
        • Langbein L.
        • Rogers M.A.
        • Winter H.
        Hair follicle-specific keratins and their diseases.
        Exp Cell Res. 2007; 313: 2010-2020
        • Schweizer J.
        • Bowden P.E.
        • Coulombe P.A.
        • Lnagbein L.
        • Lane E.B.
        • Magin T.M.
        • et al.
        New consensus nomenclature for mammalian keratins.
        J Cell Biol. 2006; 174: 169-174
        • Schneider M.R.
        Genetic mouse models for skin research: strategies and resources.
        Genesis. 2012; 50: 652-664
        • Vassar R.
        • Rosenberg M.
        • Ross S.
        • Tyner A.
        • Fuchs E.
        Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice.
        Proc Natl Acad Sci USA. 1989; 86: 1563-1567
        • Byrne C.
        • Fuchs E.
        Probing keratinocyte adn differentiation specificity of the human K5 promoter in vitro and in transgenic mice.
        Mol Cell Biol. 1993; 13: 3176-3190
        • Rosenthal D.S.
        • Steinert P.M.
        • Chung S.
        • Huff C.A.
        • Johnson J.
        • Yuspa S.H.
        • et al.
        A human epidermal differentiation-specific keratin gene is regulated by calcium but not negative modulators of differentiation in transgenic mouse keratinocytes.
        Cell Growth Differ. 1991; 2: 107-113
        • Bailleul B.
        • Surani M.A.
        • White S.
        • Barton S.C.
        • Brown K.
        • Blessing M.
        • et al.
        Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter.
        Cell. 1990; 62: 697-708
        • Liu Y.
        • Lyle S.
        • Yang Z.
        • Cotsarelis G.
        Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge.
        J Invest Dermatol. 2003; 121: 963-968
        • Morris R.J.
        • Liu Y.
        • Marles L.
        • Yang Z.
        • Trempus C.
        • Li S.
        • et al.
        Capturing and profiling adult hair follicle stem cells.
        Nat Biotechnol. 2004; 22: 411-417
        • Crish J.F.
        • Howard J.M.
        • Zaim T.M.
        • Murthy S.
        • Eckert R.L.
        Tissue-specific and differentiation-appropriate expression of the human involucrin gene in transgenic mice: an abnormal epidermal phenotype.
        Differentiation. 1993; 53: 191-200
        • Carroll J.M.
        • Albers K.M.
        • Garlick J.A.
        • Harrington R.
        • Taichman L.B.
        Tissue- and stratum-specific expression of the human involucrin promoter in transgenic mice.
        Proc Natl Acad Sci USA. 1993; 90: 10270-10274
        • Kishimoto J.
        • Ehama R.
        • Wu L.
        • Jiang S.
        • Jiang N.
        • Burgeson R.E.
        Selective activation of the versican promoter by epitehlial-mesenchymal interactions during hair follicle development.
        Proc Natl Acad Sci USA. 1999; 96: 7336-7341
        • Kulessa H.
        • Turk G.
        • Hogan B.L.
        Inhibition of BMP signaling affects growth and differentiation in the anagen hair follicle.
        EMBO J. 2000; 19: 6664-6674
        • Gossen M.
        • Bujard H.
        Studying gene function in eukaryotes by conditional gene inactivation.
        Annu Rev Genet. 2002; 36: 153-173
        • Kistner A.
        • Gossen M.
        • Zimmermann F.
        • Jerecic J.
        • Ullmer C.
        • Lübbert H.
        • et al.
        Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice.
        Proc Natl Acad Sci USA. 1996; 93: 10933-10938
        • Furth P.A.
        • St Onge L.
        • Böger H.
        • Gruss P.
        • Gossen M.
        • Kistner A.
        • et al.
        Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter.
        Proc Natl Acad Sci USA. 1994; 91: 9302-9306
        • Diamond I.
        • Owolabi T.
        • Marco M.
        • Lam C.
        • Glick A.
        Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter.
        J Invest Dermatol. 2000; 115: 788-794
        • Xie W.
        • Chow L.T.
        • Paterson A.J.
        • Chin E.
        • Kudlow J.E.
        Conditional expression of ErbB2 oncogene elicits reversible hyperplasia in stratified epithelia and up-regulation of TGFα expression in transgenic mice.
        Oncogene. 1999; 18: 3593-3607
        • Vitale-Cross L.
        • Amornphimoltham P.
        • Fisher G.
        • Molinolo A.A.
        • Gutkind J.S.
        Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis.
        Cancer Res. 2004; 64: 8804-8807
        • Nguyen H.
        • Rendl M.
        • Fuchs E.
        Tcf3 governs stem cell features and repressed cell fate determination in skin.
        Cell. 2006; 127: 171-183
        • Capecchi M.R.
        Altering the genome by homologous recombination.
        Science. 1989; 244: 1288-1292
        • Tarutani M.
        • Itami S.
        • Okabe M.
        • Ikawa M.
        • Tezuka T.
        • Yoshikawa K.
        • et al.
        Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development.
        Proc Natl Acad Sci USA. 1997; 94: 7400-7405
        • Ramirez A.
        • Page A.
        • Gandarillas A.
        • Zanet J.
        • Pibre S.
        • Vidal M.
        A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination.
        Genesis. 2004; 39: 52-57
        • Vasioukhin V.
        • Degenstein L.
        • Wise B.
        • Fuchs E.
        The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin.
        Proc Natl Acad Sci USA. 1999; 96: 8551-8556
        • Huelsken J.
        • Vogel R.
        • Erdmann B.
        • Cotsarelis G.
        • Birchmeier W.
        β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin.
        Cell. 2001; 105: 533-545
        • Voiculescu O.
        • Charnay P.
        • Schneider-Maunoury S.
        Expression pattern of Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous systems.
        Genesis. 2000; 26: 123-126
        • Van Mater D.
        • Kolligs F.T.
        • Dlugosz A.A.
        • Fearon E.R.
        Transient activation of β-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice.
        Genes Dev. 2003; 17: 1219-1224
        • Indra A.K.
        • Warot X.
        • Brocard J.
        • Bornert J.M.
        • Xiao J.H.
        • Chambon P.
        • et al.
        Temporally controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases.
        Nucleic Acids Res. 1999; 27: 4324-4327
        • Indra A.K.
        • Li M.
        • Brocard J.
        • Warot X.
        • Bornert J.M.
        • Gérard C.
        Targeted somatic mutagenesis in mouse epidermis.
        Horm Res. 2000; 54: 296-300
        • Valenzuela D.M.
        • Murphy A.J.
        • Frendewey D.
        • Gale N.W.
        • Economides A.N.
        • Auerbach W.
        • et al.
        High-throughout engineering of the mouse genome coupled with high-resolution expression analysis.
        Nat Biotechnol. 2003; 21: 652-659
        • Largaespada D.A.
        Transposon mutagenesis in mice.
        Methods Mol Biol. 2009; 530: 379-390
        • Auwerx J.
        • Avner P.
        • Baldock R.
        • Ballabio A.
        • Balling R.
        • Barbacid M.
        • et al.
        The European dimension for the mouse genome mutagenesis program.
        Nat Genet. 2004; 36: 925-927
        • Austin C.P.
        • Battey J.F.
        • Bradley A.
        • Bucan M.
        • Capecchi M.
        • Collins F.S.
        • et al.
        The knockout mouse project.
        Nat Genet. 2004; 36: 921-924
        • Nakamura M.
        • Tobin D.J.
        • Richards-Smith B.
        • Sundberg J.P.
        • Paus R.
        Mutant laboratory mice with abnormalities in pigmentation: annotated tables.
        J Dermatol Sci. 2002; 28: 1-33
        • Schneider M.R.
        • Paus R
        Sebocytes, multifaceted epithelial cells: lipid production and holocrine secretion.
        Int J Biochem Cell Biol. 2010; 42: 181-185


      Motonobu Nakamura (MD, PhD) is Professor at Department of Dermatology in University of Occupational and Environmental Health, Japan. He graduated from Kyoto University, Japan and received his MD degree in 1991. He received his PhD in 1997 at Kyoto University. In 2000–2002, he served as Visiting Researcher under Prof. Ralf Paus at Department of Dermatology, University Medical Center Hamburg-Eppendorf, Germany. He moved to University of Occupational and Environmental Health as the Assistant Professor in 2008 and became Professor in 2012. His research interest includes pathomechanisms of alopecia.