Advertisement

Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages

  • Hsiou-Hsin Tsai
    Affiliations
    Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
    Search for articles by this author
  • Woan-Rouh Lee
    Affiliations
    Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan

    Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, Taipei 235, Taiwan
    Search for articles by this author
  • Pai-Hua Wang
    Affiliations
    Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
    Search for articles by this author
  • Kur-Ta Cheng
    Affiliations
    Department of Biochemistry, Taipei Medical University, Taipei 110, Taiwan
    Search for articles by this author
  • Yen-Chou Chen
    Correspondence
    Corresponding author at: Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan. Tel.: +886 2 27361661x3421; fax: +886 2 23787139.
    Affiliations
    Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan

    Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
    Search for articles by this author
  • Shing-Chuan Shen
    Correspondence
    Corresponding author. Tel.: +886 2 27361661x3425; fax: +886 2 23787139.
    Affiliations
    Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
    Search for articles by this author
Published:November 23, 2012DOI:https://doi.org/10.1016/j.jdermsci.2012.10.009

      Abstract

      Background

      Propionibacterium acnes (P. acnes), a gram-positive anaerobic bacterium, plays a critical role in the development of inflammatory lesion as a result of cytokines production by keratinocytes and macrophages activation. However, effect of P. acnes on iNOS/NO and COX-2/PGE2 production in macrophages is still uninvestigated.

      Objective

      This study aimed at determining the reactive oxygen species (ROS), inducible nitric oxide (NO) synthase (iNOS)/nitric oxide (NO), and cyclooxygenase (COX)-2/prostaglandin (PG)E2 produced by macrophages upon P. acnes infection, and dissecting the mechanism of P. acnes-stimulated multiplicity of infection (MOI)-dependent increases in iNOS and COX-2 protein expressions in accordance with the elevation of NO and PGE2 production by RAW264.7 macrophages.

      Methods

      Using an in vitro cell culture system, the effects of P. acnes on iNOS/NO, COX-2/PGE2, ROS production, ERK/JNK, and AP-1/NF-κB activation were examined via Western blotting, a flow cytometric analysis, and luciferase assay. In pharmacological studies, the ROS scavenger, N-acetyl cysteine (NAC), the NADPH oxidase inhibitor, diphenylene iodide (DPI), and mitogen-activated protein kinase (MAPK) inhibitors (U0126 and SP600125) were applied to investigate the mechanism.

      Results

      We found that P. acnes exposures increased iNOS/NO and COX-2/PGE2 expression in RAW264.7, J774A.1, and peritoneal macrophages via a MOI-dependent manner. Increased ROS production, ERK/JNK protein phosphorylation, and elevated AP-1/NF-κB luciferase activity are identified in P. acnes-induced iNOS/NO and COX-2/PGE2 production. Additionally, hispolon but not its analogs, hispolon methylether or dehydroxyhispolon, showed significant inhibition of P. acnes-induced iNOS/NO and COX-2/PGE2 production, indicating an important role of OH at C5 for hispolon's inhibition of P. acnes-induced inflammatory events in macrophages.

      Conclusion

      ROS-dependent stimulation of ERK, JNK, NF-κB, and AP-1 activation contributes to P. acnes-induced iNOS/NO and COX-2/PGE2 in macrophages, and chemicals such as hispolon possessing ability to block iNOS/NO and COX-2/PGE2 production reserve potential to be further developed for treatment of the early phase of inflammation elicited by P. acnes.

      Keywords

      Abbreviations:

      P. acnes (Propionibacterium acnes), MOI (multiplicity of infection), iNOS (inducible nitric oxide synthase), NO (nitric oxide), COX-2 (cycolooxygenase 2), PGE2 (prostaglandin E2), ROS (reactive oxygen species), NAC (N-acetyl cysteine), Vit c (vitamin c), DPI (diphenylene iodide), MAPK (mitogen-activated protein kinase), DMSO (dimethyl sulfoxide), ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), LPS (lipopolysaccharide), NF-κB (nuclear factor-κB), AP-1 (activator protein-1), HIS (hispolon MTT, tetrazolium dye 3-(4,5,-dimethylthiazol)-2-yl-2,5-diphenyltetrazolium), PDTC (pyrrolidinedithiocarbamic acid), CUR (curcumin), Allo (allopurinol), tIκB (total IκB)
      To read this article in full you will need to make a payment

      References

        • Leeming J.P.
        • Holland K.T.
        • Cuncliffe W.J.
        The microbial colonization of inflamed acne vulgaris lesions.
        Br J Dermatol. 1988; 118: 203-208
        • Leyden J.J.
        • McGinley K.J.
        • Vowels B.
        Propionibacterium acnes colonization in acne and nonacne.
        Dermatology. 1998; 196: 55-58
        • Kligman A.M.
        An overview of acne.
        J Invest Dermatol. 1974; 62: 268-287
        • Toyoda M.
        • Morohashi M.
        Pathogenesis of acne.
        Med Electron Microsc. 2001; 34: 29-40
        • Degitz K.
        • Placzek M.
        • Borelli C.
        • Plewig G.
        Pathophysiology of acne.
        J Dtsch Dermatol Ges. 2007; 5: 316-323
        • Kim J.
        Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses.
        Dermatology. 2005; 211: 193-198
        • Kim J.
        • Ochoa M.T.
        • Krutzik S.R.
        • Takeuchi O.
        • Uematsu S.
        • Legaspi A.J.
        • et al.
        Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses.
        J Immunol. 2002; 169: 1535-1541
        • Tsai H.H.
        • Chen Y.C.
        • Lee W.R.
        • Hu C.H.
        • Hakozaki T.
        • Yoshii T.
        • et al.
        Inhibition of inflammatory nitric oxide production and epidermis damages by saccharomycopsis ferment filtrate.
        J Dermatol Sci. 2006; 42: 249-257
        • Chow J.M.
        • Lin H.Y.
        • Shen S.C.
        • Wu M.S.
        • Lin C.W.
        • Chiu W.T.
        • et al.
        Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination.
        Toxicol Appl Pharm. 2009; 237: 357-365
        • Ayala A.
        • Chaudry I.H.
        Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis.
        Shock. 1996; 6: S27-S38
        • Minghetti L.
        • Ajmone-Cat M.A.
        • De Berardinis M.A.
        • De Simone R.
        Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation.
        Brain Res Brain Res Rev. 2005; 48: 251-256
        • Shen S.C.
        • Lin H.Y.
        • Yang L.Y.
        • Wu C.Y.
        • Chen Y.C.
        Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As + 3 and MMA + 3-induced apoptosis through inhibition of telomerase activity via JNK activation.
        Toxicol Appl Pharm. 2008; 229: 239-251
        • Chang S.P.
        • Shen S.C.
        • Lee W.R.
        • Yang L.L.
        • Chen Y.C.
        Imatinib mesylate induction of ROS-dependent apoptosis in melanoma B16F0 cells.
        J Dermatol Sci. 2011; 62: 183-191
        • Masaki H.
        Role of antioxidants in the skin: anti-aging effects.
        J Dermatol Sci. 2010; 58: 85-90
        • Sarici G.
        • Cinar S.
        • Armutcu F.
        • Altinyazar C.
        • Koca R.
        • Tekin N.S.
        Oxidative stress in acne vulgaris.
        J Eur Acad Dermatol Venereol. 2010; 24: 763-767
        • Abdel Fattah N.S.
        • Shaheen M.A.
        • Ebrahim A.A.
        • El Okda E.S.
        Tissue and blood superoxide dismutase activities and malondialdehyde levels in different clinical severities of acne vulgaris.
        Br J Dermatol. 2008; 159: 1086-1091
        • Grange P.A.
        • Raingeaud J.
        • Calvez V.
        • Dupin N.
        Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways.
        J Dermatol Sci. 2009; 56: 106-112
        • Lin C.W.
        • Shen S.C.
        • Chien C.C.
        • Yang L.Y.
        • Shia L.T.
        • Chen Y.C.
        12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCα/ERK/NF-κB-dependent MMP-9 expression.
        J Cell Physiol. 2010; 225: 472-481
        • Lin C.W.
        • Shen S.C.
        • Ko C.H.
        • Lin M.W.
        • Lin H.Y.
        • Chen Y.C.
        Reciprocal activation of macrophages and breast carcinoma cells by nitric oxide and colony-stimulating factor-1.
        Carcinogenesis. 2010; 31: 2039-2048
        • Sugisaki H.
        • Yamanaka K.
        • Kakeda M.
        • Kitagawa H.
        • Tanaka K.
        • Watanabe K.
        • et al.
        Increased interferon-gamma, interleukin-12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: host response but not bacterial species is the determinant factor of the disease.
        J Dermatol Sci. 2009; 55: 47-52
        • Nakatsuji T.
        • Liu Y.T.
        • Huang C.P.
        • Zoubouis C.C.
        • Gallo R.L.
        • Huang C.M.
        Antibodies elicited by inactivated Propionibacterium acnes-based vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: relevance to therapy for acne vulgaris.
        J Invest Dermatol. 2008; 128: 2451-2457
        • Wu Y.
        • Brouet I.
        • Calmels S.
        • Bartsch H.
        • Ohshima H.
        Increased endogenous N-nitrosamine and nitrate formation by induction of nitric oxide synthase in rats with acute hepatic injury caused by Propionibacterium acnes and lipopolysaccharide administration.
        Carcinogenesis. 1993; 14: 7-10
        • Fassi Fehri L.
        • Mak T.N.
        • Laube B.
        • Brinkmann V.
        • Ogilvie L.A.
        • Mollenkopf H.
        • et al.
        Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells.
        Int J Med Microbiol. 2011; 301: 69-78
        • Dikalov S.
        Cross talk between mitochondria and NADPH oxidases.
        Free Radic Biol Med. 2011; 51: 1289-1301
        • Benavente C.A.
        • Jacobson M.K.
        • Jacobson E.L.
        NAD in skin: therapeutic approaches for niacin.
        Curr Pharm Des. 2009; 15: 29-38
        • Fridovich I.
        Fundamental aspects of reactive oxygen species, or what's the matter with oxygen?.
        Ann N Y Acad Sci. 1999; 893: 13-18
        • Chang Y.C.
        • Li P.C.
        • Chen B.C.
        • Chang M.S.
        • Wang J.L.
        • Chiu W.T.
        • et al.
        Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK, and nuclear factor-kappaB pathways.
        Cell Signal. 2006; 18: 1235-1243
        • Chen C.
        • Chen Y.H.
        • Lin W.W.
        Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages.
        Immunology. 1999; 97: 124-129
        • Shibata M.
        • Katsuyama M.
        • Onodera T.
        • Ehama R.
        • Hosoi J.
        • Tagami H.
        Glucocorticoids enhance Toll-like receptor 2 expression in human keratinocytes stimulated with Propionibacterium acnes or proinflammatory cytokines.
        J Invest Dermatol. 2009; 129: 375-382
        • Gloire G.
        • Legrand-Poels S.
        • Piette J.
        NF-kappaB activation by reactive oxygen species: fifteen years later.
        Biochem Pharmacol. 2006; 72: 1493-1505
        • Kurokawa I.
        • Danby F.W.
        • Ju Q.
        • Wang X.
        • Xiang L.F.
        • Xia L.
        • et al.
        New developments in our understanding of acne pathogenesis and treatment.
        Exp Dermatol. 2009; 18: 821-832
        • Chen W.
        • Zhao Z.
        • Li L.
        • Wu B.
        • Chen S.F.
        • Zhou H.
        • et al.
        Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway.
        Free Radic Biol Med. 2008; 45: 60-72
        • Takeda K.
        • Kaisho T.
        • Akira S.
        Toll-like receptors.
        Annu Rev Immunol. 2003; 21: 335-376
        • Kim J.
        Review of the innate immune response in acne vulgaris: activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses.
        Dermatology. 2005; 211: 193-198
        • Lyte P.
        • Sur R.
        • Nigam A.
        • Southall M.D.
        Heat-killed Propionibacterium acnes is capable of inducing inflammatory responses in skin.
        Exp Dermatol. 2009; 18: 1070-1072
        • Song P.I.
        • Park Y.M.
        • Abraham T.
        • Harten B.
        • Zivony A.
        • Neparidze N.
        • et al.
        Human keratinocytes express functional CD14 and toll-like receptor 4.
        J Invest Dermatol. 2002; 119: 424-432