Advertisement

Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice

Published:February 21, 2013DOI:https://doi.org/10.1016/j.jdermsci.2013.01.002

      Abstract

      Background

      Tight junctions (TJs) contribute to the epithelial barrier function by preventing leakage of solutes through the intercellular space. In the skin, TJs occur in the stratum granulosum (SG), where claudin-1 and claudin-4 are expressed as adhesion molecules of TJs. Claudin-1-deficient (Cldn1−/−) mice die within one day of birth accompanied by excessive transepidermal water loss, indicating a critical role of TJs in the epidermal barrier function. However, it has been debated whether the impaired TJ function in the SG also affects the stratum corneum (SC) barrier function or whether it results in skin barrier defects despite a normal SC barrier.

      Objective

      To clarify whether the impaired TJ function affects the SC barrier function in Cldn1−/− mice.

      Methods

      The morphology, barrier function and biochemical characteristic of the SC were compared between Cldn1−/− and Cldn1+/+ mice.

      Results

      Scanning electron microscopy demonstrated abnormally wrinkled and rough corneocytes in Cldn1−/− mice. Notably, the X-gal tracer easily permeated into the Cldn1−/− SC, and water evaporation through isolated Cldn1−/− SC sheets was significantly higher than that through Cldn1+/+ SC sheets. Furthermore, the ceramide composition of the SC lipids and filaggrin processing were altered in Cldn1−/− mice.

      Conclusion

      Cldn1−/− mice exhibited the abnormal SC formation and SC barrier defects. These findings demonstrate for the first time that TJs in the SG play crucial roles in the complete SC formation and SC barrier function.

      Abbreviations:

      Cldn1 (claudin-1), SC (stratum corneum), SEM (scanning electron microscopy), SG (stratum granulosum), TEWL (transepidermal water loss), TJ (tight junction)

      Keywords

      To read this article in full you will need to make a payment

      References

        • Nemes Z.
        • Steinert P.M.
        Bricks and mortar of the epidermal barrier.
        Exp Mol Med. 1999; 31: 5-19
        • Candi E.
        • Schmidt R.
        • Melino G.
        The cornified envelope: a model of cell death in the skin.
        Nat Rev Mol Cell Biol. 2005; 6: 328-340
        • Hitomi K.
        Transglutaminases in skin epidermis.
        Eur J Dermatol. 2005; 15: 313-319
        • Mack J.W.
        • Steven A.C.
        • Steinert P.M.
        The mechanism of interaction of filaggrin with intermediate filaments. The ionic zipper hypothesis.
        J Mol Biol. 1993; 232: 50-66
        • Sandilands A.
        • Sutherland C.
        • Irvine A.D.
        • McLean W.H.
        Filaggrin in the frontline: role in skin barrier function and disease.
        J Cell Sci. 2009; 122: 1285-1294
        • Ovaere P.
        • Lippens S.
        • Vandenabeele P.
        • Declercq W.
        The emerging roles of serine protease cascades in the epidermis.
        Trends Biochem Sci. 2009; 34: 453-463
        • Madison K.C.
        Barrier function of the skin: “la raison d’etre” of the epidermis.
        J Invest Dermatol. 2003; 121: 231-241
        • Feingold K.R.
        Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis.
        J Lipid Res. 2007; 48: 2531-2546
        • Holleran W.M.
        • Takagi Y.
        • Menon G.K.
        • Legler G.
        • Feingold K.R.
        • Elias P.M.
        Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function.
        J Clin Invest. 1993; 91: 1656-1664
        • Uchida Y.
        • Hara M.
        • Nishio H.
        • Sidransky E.
        • Inoue S.
        • Otsuka F.
        • et al.
        Epidermal sphingomyelins are precursors for selected stratum corneum ceramides.
        J Lipid Res. 2000; 41: 2071-2082
        • Redoules D.
        • Tarroux R.
        • Perie J.
        Epidermal enzymes: their role in homeostasis and their relationships with dermatoses.
        Skin Pharmacol Appl Skin Physiol. 1998; 11: 183-192
        • Proksch E.
        • Brandner J.M.
        • Jensen J.M.
        The skin: an indispensable barrier.
        Exp Dermatol. 2008; 17: 1063-1072
        • Farquhar M.G.
        • Palade G.E.
        Junctional complexes in various epithelia.
        J Cell Biol. 1963; 17: 375-412
        • Furuse M.
        • Tsukita S.
        Claudins in occluding junctions of humans and flies.
        Trends Cell Biol. 2006; 16: 181-188
        • Van Itallie C.M.
        • Anderson J.M.
        Claudins and epithelial paracellular transport.
        Annu Rev Physiol. 2006; 68: 403-429
        • Angelow S.
        • Ahlstrom R.
        • Yu A.S.
        Biology of claudins.
        Am J Physiol Renal Physiol. 2008; 295: F867-F876
        • Brandner J.M.
        • Kief S.
        • Grund C.
        • Rendl M.
        • Houdek P.
        • Kuhn C.
        • et al.
        Organization and formation of the tight junction system in human epidermis and cultured keratinocytes.
        Eur J Cell Biol. 2002; 81: 253-263
        • Furuse M.
        • Hata M.
        • Furuse K.
        • Yoshida Y.
        • Haratake A.
        • Sugitani Y.
        • et al.
        Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice.
        J Cell Biol. 2002; 156: 1099-1111
        • Yuki T.
        • Haratake A.
        • Koishikawa H.
        • Morita K.
        • Miyachi Y.
        • Inoue S.
        Tight junction proteins in keratinocytes: localization and contribution to barrier function.
        Exp Dermatol. 2007; 16: 324-330
        • Kurasawa M.
        • Kuroda S.
        • Kida N.
        • Murata M.
        • Oba A.
        • Yamamoto T.
        • et al.
        Regulation of tight junction permeability by sodium caprate in human keratinocytes and reconstructed epidermis.
        Biochem Biophys Res Commun. 2009; 381: 171-175
        • Kirschner N.
        • Houdek P.
        • Fromm M.
        • Moll I.
        • Brandner J.M.
        Tight junctions form a barrier in human epidermis.
        Eur J Cell Biol. 2010; 89: 839-842
        • Hadj-Rabia S.
        • Baala L.
        • Vabres P.
        • Hamel-Teillac D.
        • Jacquemin E.
        • Fabre M.
        • et al.
        Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease.
        Gastroenterology. 2004; 127: 1386-1390
        • Feldmeyer L.
        • Huber M.
        • Fellmann F.
        • Beckmann J.S.
        • Frenk E.
        • Hohl D.
        Confirmation of the origin of NISCH syndrome.
        Hum Mutat. 2006; 27: 408-410
        • De Benedetto A.
        • Rafaels N.M.
        • McGirt L.Y.
        • Ivanov A.I.
        • Georas S.N.
        • Cheadle C.
        • et al.
        Tight junction defects in patients with atopic dermatitis.
        J Allergy Clin Immunol. 2011; 127 (e771–7): 773-786
        • Kirschner N.
        • Poetzl C.
        • von den Driesch P.
        • Wladykowski E.
        • Moll I.
        • Behne M.J.
        • et al.
        Alteration of tight junction proteins is an early event in psoriasis: putative involvement of proinflammatory cytokines.
        Am J Pathol. 2009; 175: 1095-1106
        • Yamaguchi T.
        • Hayashi T.
        • Takami H.
        • Nakasone K.
        • Ohnishi M.
        • Nakayama K.
        • et al.
        Phage conversion of exfoliative toxin A production in Staphylococcus aureus.
        Mol Microbiol. 2000; 38: 694-705
        • Hardman M.J.
        • Sisi P.
        • Banbury D.N.
        • Byrne C.
        Patterned acquisition of skin barrier function during development.
        Development. 1998; 125: 1541-1552
        • Leyvraz C.
        • Charles R.P.
        • Rubera I.
        • Guitard M.
        • Rotman S.
        • Breiden B.
        • et al.
        The epidermal barrier function is dependent on the serine protease CAP1/Prss8.
        J Cell Biol. 2005; 170: 487-496
        • Sakai S.
        • Endo Y.
        • Ozawa N.
        • Sugawara T.
        • Kusaka A.
        • Sayo T.
        • et al.
        Characteristics of the epidermis and stratum corneum of hairless mice with experimentally induced diabetes mellitus.
        J Invest Dermatol. 2003; 120: 79-85
        • Bligh E.G.
        • Dyer W.J.
        A rapid method of total lipid extraction and purification.
        Can J Biochem Physiol. 1959; 37: 911-917
        • Hachem J.P.
        • Crumrine D.
        • Fluhr J.
        • Brown B.E.
        • Feingold K.R.
        • Elias P.M.
        pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion.
        J Invest Dermatol. 2003; 121: 345-353
        • Yuki T.
        • Yoshida H.
        • Akazawa Y.
        • Komiya A.
        • Sugiyama Y.
        • Inoue S.
        Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes.
        J Immunol. 2011; 187: 3230-3237
        • Amagai M.
        • Matsuyoshi N.
        • Wang Z.H.
        • Andl C.
        • Stanley J.R.
        Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1.
        Nat Med. 2000; 6: 1275-1277
        • Nishifuji K.
        • Shimizu A.
        • Ishiko A.
        • Iwasaki T.
        • Amagai M.
        Removal of amino-terminal extracellular domains of desmoglein 1 by staphylococcal exfoliative toxin is sufficient to initiate epidermal blister formation.
        J Dermatol Sci. 2010; 59: 184-191
        • Choi M.J.
        • Maibach H.I.
        Role of ceramides in barrier function of healthy and diseased skin.
        Am J Clin Dermatol. 2005; 6: 215-223
        • Holleran W.M.
        • Takagi Y.
        • Imokawa G.
        • Jackson S.
        • Lee J.M.
        • Elias P.M.
        Beta-glucocerebrosidase activity in murine epidermis: characterization and localization in relation to differentiation.
        J Lipid Res. 1992; 33: 1201-1209
        • Takagi Y.
        • Kriehuber E.
        • Imokawa G.
        • Elias P.M.
        • Holleran W.M.
        Beta-glucocerebrosidase activity in mammalian stratum corneum.
        J Lipid Res. 1999; 40: 861-869
        • Brown S.J.
        • McLean W.H.
        One remarkable molecule: filaggrin.
        J Invest Dermatol. 2012; 132: 751-762
        • Smith F.J.
        • Irvine A.D.
        • Terron-Kwiatkowski A.
        • Sandilands A.
        • Campbell L.E.
        • Zhao Y.
        • et al.
        Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris.
        Nat Genet. 2006; 38: 337-342
        • Moniaga C.S.
        • Egawa G.
        • Kawasaki H.
        • Hara-Chikuma M.
        • Honda T.
        • Tanizaki H.
        • et al.
        Flaky tail mouse denotes human atopic dermatitis in the steady state and by topical application with Dermatophagoides pteronyssinus extract.
        Am J Pathol. 2010; 176: 2385-2393
        • Pummi K.
        • Malminen M.
        • Aho H.
        • Karvonen S.L.
        • Peltonen J.
        • Peltonen S.
        Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes.
        J Invest Dermatol. 2001; 117: 1050-1058
        • Hashimoto K.
        Intercellular spaces of the human epidermis as demonstrated with lanthanum.
        J Invest Dermatol. 1971; 57: 17-31
        • Ishida-Yamamoto A.
        • Kishibe M.
        • Murakami M.
        • Honma M.
        • Takahashi H.
        • Iizuka H.
        Lamellar granule secretion starts before the establishment of tight junction barrier for paracellular tracers in mammalian epidermis.
        PLoS ONE. 2012; 7: e31641
        • Kubo A.
        • Nagao K.
        • Yokouchi M.
        • Sasaki H.
        • Amagai M.
        External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers.
        J Exp Med. 2009; 206: 2937-2946
        • Imokawa G.
        • Abe A.
        • Jin K.
        • Higaki Y.
        • Kawashima M.
        • Hidano A.
        Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin?.
        J Invest Dermatol. 1991; 96: 523-526
        • Motta S.
        • Monti M.
        • Sesana S.
        • Caputo R.
        • Carelli S.
        • Ghidoni R.
        Ceramide composition of the psoriatic scale.
        Biochim Biophys Acta. 1993; 1182: 147-151
        • Paige D.G.
        • Morse-Fisher N.
        • Harper J.I.
        Quantification of stratum corneum ceramides and lipid envelope ceramides in the hereditary ichthyoses.
        Br J Dermatol. 1994; 131: 23-27
        • Ishikawa J.
        • Narita H.
        • Kondo N.
        • Hotta M.
        • Takagi Y.
        • Masukawa Y.
        • et al.
        Changes in the ceramide profile of atopic dermatitis patients.
        J Invest Dermatol. 2010; 130: 2511-2514
        • Bouwstra J.A.
        • Gooris G.S.
        • Dubbelaar F.E.
        • Weerheim A.M.
        • Ijzerman A.P.
        • Ponec M.
        Role of ceramide 1 in the molecular organization of the stratum corneum lipids.
        J Lipid Res. 1998; 39: 186-196
        • Holleran W.M.
        • Ginns E.I.
        • Menon G.K.
        • Grundmann J.U.
        • Fartasch M.
        • McKinney C.E.
        • et al.
        Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease.
        J Clin Invest. 1994; 93: 1756-1764
        • Holleran W.M.
        • Takagi Y.
        • Uchida Y.
        Epidermal sphingolipids: metabolism, function, and roles in skin disorders.
        FEBS Lett. 2006; 580: 5456-5466
        • Matsui T.
        • Kinoshita-Ida Y.
        • Hayashi-Kisumi F.
        • Hata M.
        • Matsubara K.
        • Chiba M.
        • et al.
        Mouse homologue of skin-specific retroviral-like aspartic protease involved in wrinkle formation.
        J Biol Chem. 2006; 281: 27512-27525
        • Kawasaki H.
        • Nagao K.
        • Kubo A.
        • Hata T.
        • Shimizu A.
        • Mizuno H.
        • et al.
        Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice.
        J Allergy Clin Immunol. 2012; 129: 1538-1546