Advertisement

Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT)

      Abstract

      Background

      The use of non-thermal atmospheric pressure plasma in dermatology to improve the healing of chronic wounds is a promising application. The antimicrobial properties of physical plasma offer on the one hand the killing of bacteria, which are often a problem in chronic wounds. On the other hand, plasma can activate cells which are involved in the wound closure.

      Objective

      To guarantee a safe application it is essential to understand basic interactions between physical plasma and human skin cells.

      Methods

      In our study, human keratinocytes (HaCaT cells) were directly plasma treated with a dielectric barrier discharge (DBD) plasma source and effects on viability, DNA, cell cycle, intracellular concentration of reactive oxygen species and induction of apoptosis were observed.

      Results

      A treatment time-dependent loss of recovered adherent HaCaT cells after 24 h and a linear increase of DNA damage were observed, which was no longer evident 24 h after plasma stimulation, except for long treatment times. An accumulation of HaCaT cells in G2/M phase and a decrease in the G1 phase was caused by DBD plasma. The increasing formation of intracellular ROS is also attributed to plasma treatment. In contrast to other studies we did not find clear evidences for apoptosis in adherent HaCaT cells. A culture medium exchange subsequently after plasma treatment weakened the observed effects.

      Conclusion

      DBD plasma treatment resulted in oxidative stress in human keratinocytes which is related to deficient cell performance.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kalghatgi S.U.
        • Fridman G.
        • Cooper M.
        • Nagaraj G.
        • Peddinghaus M.
        • Balasubramanian M.
        • et al.
        Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma.
        IEEE T Plasma Sci. 2007; 35: 1559-1566
        • Fridman G.
        • Friedman G.
        • Gutsol A.
        • Shekhter A.B.
        • Vasilets V.N.
        • Fridman A.
        Applied plasma medicine.
        Plasma Process Polym. 2008; 5: 503-533
        • Watson J.P.
        • Bennett M.K.
        • Griffin S.M.
        • Matthewson K.
        The tissue effect of argon plasma coagulation on esophageal and gastric mucosa.
        Gastrointest Endosc. 2000; 52: 342-345
        • Schroder K.
        • Finke B.
        • Ohl A.
        • Luthen F.
        • Bergemann C.
        • Nebe B.
        • et al.
        Capability of differently charged plasma polymer coatings for control of tissue interactions with titanium surfaces.
        J Adhes Sci Technol. 2010; 24: 1191-1205
        • Duske K.
        • Koban I.
        • Kindel E.
        • Schroder K.
        • Nebe B.
        • Holtfreter B.
        • et al.
        Atmospheric plasma enhances wettability and cell spreading on dental implant metals.
        J Clin Periodontol. 2012; 39: 400-407
        • Yasuda H.
        • Miura T.
        • Kurita H.
        • Takashima K.
        • Mizuno A.
        Biological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma.
        Plasma Process Polym. 2010; 7: 301-308
        • Scholtz V.
        • Julak J.
        • Kriha V.
        The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension.
        Plasma Process Polym. 2010; 7: 237-243
        • Oehmigen K.
        • Hahnel M.
        • Brandenburg R.
        • Wilke C.
        • Weltmann K.D.
        • von Woedtke T.
        The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids.
        Plasma Process Polym. 2010; 7: 250-257
        • Liang Y.D.
        • Wu Y.
        • Sun K.
        • Chen Q.
        • Shen F.X.
        • Zhang J.
        • et al.
        Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma.
        Environ Sci Technol. 2012; 46: 3360-3368
        • Laroussi M.
        Low temperature plasma-based sterilization: overview and state-of-the-art.
        Plasma Process Polym. 2005; 2: 391-400
        • Weltmann K.D.
        • Brandenburg R.
        • von Woedtke T.
        • Ehlbeck J.
        • Foest R.
        • Stieber M.
        • et al.
        Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs).
        J Phys D Appl Phys. 2008; 41
        • Ehlbeck J.
        • Schnabel U.
        • Polak M.
        • Winter J.
        • von Woedtke T.
        • Brandenburg R.
        • et al.
        Low temperature atmospheric pressure plasma sources for microbial decontamination.
        J Phys D Appl Phys. 2011; 44
        • Lee J.K.
        • Kim M.S.
        • Byun J.H.
        • Kim K.T.
        • Kim G.C.
        • Park G.Y.
        Biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching.
        Jpn J Appl Phys. 2011; 50
        • Sensenig R.
        • Kalghatgi S.
        • Cerchar E.
        • Fridman G.
        • Shereshevsky A.
        • Torabi B.
        • et al.
        Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species.
        Ann Biomed Eng. 2011; 39: 674-687
        • Kim J.Y.
        • Ballato J.
        • Foy P.
        • Hawkins T.
        • Wei Y.Z.
        • Li J.H.
        • et al.
        Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma.
        Biosens Bioelectron. 2011; 28: 333-338
        • Fridman G.
        • Shereshevsky A.
        • Jost M.M.
        • Brooks A.D.
        • Fridman A.
        • Gutsol A.
        • et al.
        Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines.
        Plasma Chem Plasma Process. 2007; 27: 163-176
        • Keidar M.
        • Walk R.
        • Shashurin A.
        • Srinivasan P.
        • Sandler A.
        • Dasgupta S.
        • et al.
        Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy.
        Br J Cancer. 2011; 105: 1295-1301
        • Kramer A.
        • Lindequist U.
        • Weltmann K.-D.
        • Wilke C.
        • von Woedtke T.
        Plasma Medicine – its perspective for wound therapy.
        GMS Krankenhhyg Interdiszip. 2008; 3 (Doc16)
        • Wende K.
        • Landsberg K.
        • Lindequist U.
        • Weltmann K.D.
        • von Woedtke T.
        Distinctive activity of a nonthermal atmospheric-pressure plasma jet on eukaryotic and prokaryotic cells in a cocultivation approach of keratinocytes and microorganisms.
        IEEE T Plasma Sci. 2010; 38: 2479-2485
        • Heinlin J.
        • Morfill G.
        • Landthaler M.
        • Stolz W.
        • Isbary G.
        • Zimmermann J.L.
        • et al.
        Plasma medicine: possible applications in dermatology.
        J Dtsch Dermatol Ges. 2010; 8: 968-976
        • Dobrynin D.
        • Arjunan K.
        • Fridman A.
        • Friedman G.
        • Clyne A.M.
        Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma.
        J Phys D Appl Phys. 2011; 44
        • Lloyd G.
        • Friedman G.
        • Jafri S.
        • Schultz G.
        • Fridman A.
        • Harding K.
        Gas plasma: medical uses and developments in wound care.
        Plasma Process Polym. 2010; 7: 194-211
        • Hill K.E.
        • Davies C.E.
        • Wilson M.J.
        • Stephens P.
        • Harding K.G.
        • Thomas D.W.
        Molecular analysis of the microflora in chronic venous leg ulceration.
        J Med Microbiol. 2003; 52: 365-369
        • Gjodsbol K.
        • Christensen J.J.
        • Karlsmark T.
        • Jorgensen B.
        • Klein B.M.
        • Krogfelt K.A.
        Multiple bacterial species reside in chronic wounds: a longitudinal study.
        Int Wound J. 2006; 3: 225-231
        • Nastuta A.V.
        • Topala I.
        • Grigoras C.
        • Pohoata V.
        • Popa G.
        Stimulation of wound healing by helium atmospheric pressure plasma treatment.
        J Phys D Appl Phys. 2011; 44
        • Isbary G.
        • Morfill G.
        • Schmidt H.U.
        • Georgi M.
        • Ramrath K.
        • Heinlin J.
        • et al.
        A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients.
        Brit J Dermatol. 2010; 163: 78-82
        • Metelmann H.-R.
        • von Woedtke T.
        • Bussiahn R.
        • Weltmann K.-D.
        • Rieck M.
        • Khalili R.
        • et al.
        Experimental recovery of CO2-laser skin lesions by plasma stimulation.
        Am J Cosmet Surg. 2012; 29: 52-56
        • Suter M.M.
        • Schulze K.
        • Bergman W.
        • Welle M.
        • Roosje P.
        • Muller E.J.
        The keratinocyte in epidermal renewal and defence.
        Vet Dermatol. 2009; 20: 515-532
        • Yoshizumi M.
        • Nakamura T.
        • Kato M.
        • Ishioka T.
        • Kozawa K.
        • Wakamatsu K.
        • et al.
        Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT.
        Cell Biol Int. 2008; 32: 1405-1411
        • Tsuru K.
        • Horikawa T.
        • Budiyanto A.
        • Hikita I.
        • Ueda M.
        • Ichihashi M.
        Low-dose ultraviolet B radiation synergizes with TNF-alpha to induce apoptosis of keratinocytes.
        J Dermatol Sci. 2001; 26: 209-216
        • Wu N.L.
        • Fang J.Y.
        • Chen M.
        • Wu C.J.
        • Huang C.C.
        • Hung C.F.
        Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage.
        J Agric Food Chem. 2011; 59: 8391-8400
        • Thorn T.
        • Gniadecki R.
        • Petersen A.B.
        • Vicanova J.
        • Wulf H.C.
        Differences in activation of G2/M checkpoint in keratinocytes after genotoxic stress induced by hydrogen peroxide and ultraviolet a radiation.
        Free Radic Res. 2001; 35: 405-416
        • Schafer M.
        • Werner S.
        Oxidative stress in normal and impaired wound repair.
        Pharmacol Res. 2008; 58: 165-171
        • Kalghatgi S.
        • Friedman G.
        • Fridman A.
        • Clyne A.M.
        Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release.
        Ann Biomed Eng. 2010; 38: 748-757
        • Goetz M.E.
        • Luch A.
        Reactive species: a cell damaging rout assisting to chemical carcinogens.
        Cancer Lett. 2008; 266: 73-83
        • Hall E.H.
        • Schoenbach K.H.
        • Beebe S.J.
        Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells.
        Apoptosis. 2007; 12: 1721-1731
        • Kieft I.E.
        • Kurdi M.
        • Stoffels E.
        Reattachment and apoptosis after plasma-needle treatment of cultured cells.
        IEEE T Plasma Sci. 2006; 34: 1331-1336
        • Vandamme M.
        • Robert E.
        • Lerondel S.
        • Sarron V.
        • Ries D.
        • Dozias S.
        • et al.
        ROS implication in a new antitumor strategy based on non-thermal plasma.
        Int J Cancer. 2012; 130: 2185-2194
        • Yan X.
        • Xiong Z.L.
        • Zou F.
        • Zhao S.S.
        • Lu X.P.
        • Yang G.X.
        • et al.
        Plasma-induced death of HepG2 cancer cells: intracellular effects of reactive species.
        Plasma Process Polym. 2012; 9: 59-66
        • Boukamp P.
        • Petrussevska R.T.
        • Breitkreutz D.
        • Hornung J.
        • Markham A.
        • Fusenig N.E.
        Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell-line.
        J Cell Biol. 1988; 106: 761-771
        • Oehmigen K.
        • Winter J.
        • Hahnel M.
        • Wilke C.
        • Brandenburg R.
        • Weltmann K.D.
        • et al.
        Estimation of possible mechanisms of escherichia coli inactivation by plasma treated sodium chloride solution.
        Plasma Process Polym. 2011; 8: 904-913
        • Oyama Y.
        • Furukawa K.
        • Chikahisa L.
        • Hatakeyama Y.
        Effect of N,N-diethyldithiocarbamate on ionomycin-induced increase in oxidation of cellular 2′,7′-dichlorofluorescin in dissociated cerebellar neurons.
        Brain Res. 1994; 660: 158-161
        • Zhu H.
        • Bannenberg G.L.
        • Moldeus P.
        • Shertzer H.G.
        Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescin.
        Arch Toxicol. 1994; 68: 582-587
        • Singh N.P.
        • McCoy M.T.
        • Tice R.R.
        • Schneider E.L.
        A Simple technique for quantitation of low-levels of dna damage in individual cells.
        Exp Cell Res. 1988; 175: 184-191
        • Weltmann K.D.
        • Kindel E.
        • Brandenburg R.
        • Meyer C.
        • Bussiahn R.
        • Wilke C.
        • et al.
        Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation.
        Contrib Plasma Phys. 2009; 49: 631-640
        • Haertel B.
        • Wende K.
        • von Woedtke T.
        • Weltmann K.D.
        • Lindequist U.
        Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT-keratinocytes.
        Exp Dermatol. 2011; 20: 282-284
        • Leduc M.
        • Guay D.
        • Coulombe S.
        • Leask R.L.
        Effects of non-thermal plasmas on DNA and mammalian cells.
        Plasma Process Polym. 2010; 7: 899-909
        • Kim G.J.
        • Kim W.
        • Kim K.T.
        • Lee J.K.
        DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma.
        Appl Phys Lett. 2010; 96
        • Kalghatgi S.
        • Kelly C.M.
        • Cerchar E.
        • Torabi B.
        • Alekseev O.
        • Fridman A.
        • et al.
        Effects of non-thermal plasma on mammalian cells.
        PLoS ONE. 2011; 6: e16270
        • Gebicki S.
        • Gebicki J.M.
        Formation of peroxides in amino acids and proteins exposed to oxygen free radicals.
        Biochem J. 1993; 289: 743-749
        • Kalghatgi S.
        • Fridman A.
        • Azizkhan-Clifford J.
        • Friedman G.
        Damage in mammalian cells by non-thermal atmospheric pressure microsecond pulsed dielectric barrier discharge plasma is not mediated by ozone.
        Plasma Process Polym. 2012; https://doi.org/10.1002/ppap.201100156
        • Brun P.
        • Vono M.
        • Venier P.
        • Tarricone E.
        • Deligianni V.
        • Martines E.
        • et al.
        Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma.
        PLoS ONE. 2012; 7: e33245