Advertisement

Sphingosine-1-phosphate exhibits anti-proliferative and anti-inflammatory effects in mouse models of psoriasis

      Abstract

      Background

      It has been indicated that the sphingolipid sphingosine-1-phosphate (S1P) restrains the ability of dendritic cells to migrate to lymph nodes. Furthermore S1P has been demonstrated to inhibit cell growth in human keratinocytes. However, only little is known about the effect of S1P in hyperproliferative and inflammatory in vivo models.

      Objective

      In this study, locally acting S1P was explored in different experimental mouse models of psoriasis vulgaris.

      Methods

      S1P and FTY720 were tested in the imiquimod-induced psoriasis mouse model, the mouse tail assay and a pilot study of the severe combined immunodeficiency mice (SCID).

      Results

      In the imiquimod model the positive control diflorasone diacetate and S1P, but not FTY720 reduced the imiquimod-induced epidermal hyperproliferation of the ear skin. This effect was confirmed in the SCID model, where S1P treated skin from patients suffering from psoriasis showed a decrease in epidermal thickness compared to vehicle. In the imiquimod model, there was also significant inhibition of ear swelling and a moderate reduction of inflammatory cell influx and oedema formation in ear skin by S1P treatment. The inflammatory response on the back skin was, however, only reduced by diflorasone diacetate. In the mouse tail assay, the influence of S1P and FTY720 in stratum granulosum formation was tested compared to the positive control calcipotriol. Whereas topical administration of calcipotriol led to a low but significant increase of stratum granulosum, S1P and FTY720 lacked such an effect.

      Conclusion

      Taken together, these results imply that topical administration of S1P might be a new option for the treatment of mild to moderate psoriasis lesions.

      Keywords

      To read this article in full you will need to make a payment

      References

        • von Wenckstern H.
        • Zimmermann K.
        • Kleuser B.
        The role of the lysophospholipid sphingosine 1-phosphate in immune cell biology.
        Arch Immunol Ther Exp. 2006; 54: 239-251
        • Manggau M.
        • Kim D.S.
        • Ruwisch L.
        • Vogler R.
        • Korting H.C.
        • Schafer-Korting M.
        • et al.
        1Alpha, 25-dihydroxyvitamin D3 protects human keratinocytes from apoptosis by the formation of sphingosine-1-phosphate.
        J Invest Dermatol. 2001; 117: 1241-1249
        • Vogler R.
        • Sauer B.
        • Kim D.S.
        • Schafer-Korting M.
        • Kleuser B.
        Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing.
        J Invest Dermatol. 2003; 120: 693-700
        • Schuppel M.
        • Kurschner U.
        • Kleuser U.
        • Schafer-Korting M.
        • Kleuser B.
        Sphingosine 1-phosphate restrains insulin-mediated keratinocyte proliferation via inhibition of Akt through the S1P2 receptor subtype.
        J Invest Dermatol. 2008; 128: 1747-1756
        • Youm J.K.
        • Jo H.
        • Hong J.H.
        • Shin D.M.
        • Kwon M.J.
        • Jeong S.K.
        • et al.
        K6PC-5, a sphingosine kinase activator, induces anti-aging effects in intrinsically aged skin through intracellular Ca2+ signaling.
        J Dermatol Sci. 2008; 51: 89-102
        • Gollmann G.
        • Neuwirt H.
        • Tripp C.H.
        • Mueller H.
        • Konwalinka G.
        • Heufler C.
        • et al.
        Sphingosine-1-phosphate receptor type-1 agonism impairs blood dendritic cell chemotaxis and skin dendritic cell migration to lymph nodes under inflammatory conditions.
        Int Immunol. 2008; 20: 911-923
        • Reines I.
        • Kietzmann M.
        • Mischke R.
        • Tschernig T.
        • Luth A.
        • Kleuser B.
        • et al.
        Topical application of sphingosine-1-phosphate and FTY720 attenuate allergic contact dermatitis reaction through inhibition of dendritic cell migration.
        J Invest Dermatol. 2009; 129: 1954-1962
        • Nestle F.O.
        • Kaplan D.H.
        • Barker J.
        Psoriasis.
        N Engl J Med. 2009; 361: 496-509
        • Nickoloff B.J.
        • Qin J.Z.
        • Nestle F.O.
        Immunopathogenesis of psoriasis.
        Clin Rev Allergy Immunol. 2007; 33: 45-56
        • Lowes M.A.
        • Bowcock A.M.
        • Krueger J.G.
        Pathogenesis and therapy of psoriasis.
        Nature. 2007; 445: 866-873
        • Murphy G.
        • Reich K.
        In touch with psoriasis: topical treatments and current guidelines.
        J Eur Acad Dermatol Venereol. 2011; 25: 3-8
        • Leonardi C.L.
        • Kimball A.B.
        • Papp K.A.
        • Yeilding N.
        • Guzzo C.
        • Wang Y.
        • et al.
        Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1).
        Lancet. 2008; 371: 1665-1674
        • Leonardi C.
        • Matheson R.
        • Zachariae C.
        • Cameron G.
        • Li L.
        • Edson-Heredia E.
        • et al.
        Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis.
        New Engl J Med. 2012; 366: 1190-1199
        • Wilson N.J.
        • Boniface K.
        • Chan J.R.
        • McKenzie B.S.
        • Blumenschein W.M.
        • Mattson J.D.
        • et al.
        Development, cytokine profile and function of human interleukin 17-producing helper T cells.
        Nat Immunol. 2007; 8: 950-957
        • Di Cesare A.
        • Di Meglio P.
        • Nestle F.O.
        The IL-23/Th17 axis in the immunopathogenesis of psoriasis.
        J Invest Dermatol. 2009; 129: 1339-1350
        • van der Fits L.
        • Mourits S.
        • Voerman J.S.
        • Kant M.
        • Boon L.
        • Laman J.D.
        • et al.
        Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis.
        J Immunol. 2009; 182: 5836-5845
        • Boehncke W.H.
        • Ochsendorf F.R.
        • Noll S.
        • Urban M.
        • Popp A.
        • Waldherr D.
        • et al.
        Efficacy of the fully human monoclonal antibody MOR102 (#5) against intercellular adhesion molecule 1 in the psoriasis-severe combined immunodeficient mouse model.
        Br J Dermatol. 2005; 153: 758-766
        • Bosman B.
        • Matthiesen T.
        • Hess V.
        • Friderichs E.
        A quantitative method for measuring antipsoriatic activity of drugs by the mouse tail test.
        Skin Pharmacol. 1992; 5: 41-48
        • Blot V.
        • Jaquemard U.
        • Reissig H.U.
        • Kleuser B.
        Practical synthesis of sphingosine-1-phosphate and analogues.
        Synthesis (Stuttgart). 2009; 5: 759-766
        • Cuvillier O.
        • Pirianov G.
        • Kleuser B.
        • Vanek P.G.
        • Coso O.A.
        • Gutkind S.
        • et al.
        Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate.
        Nature. 1996; 381: 800-803
        • Boehncke W.H.
        • Sterry W.
        • Hainzl A.
        • Scheffold W.
        • Kaufmann R.
        Psoriasiform architecture of murine epidermis overlying human psoriatic dermis transplanted onto SCID mice.
        Arch Dermatol Res. 1994; 286: 325-330
        • Herzinger T.
        • Kleuser B.
        • Schafer-Korting M.
        • Korting H.C.
        Sphingosine-1-phosphate signaling and the skin.
        Am J Clin Dermatol. 2007; 8: 329-336
        • Brinkmann V.
        • Davis M.D.
        • Heise C.E.
        • Albert R.
        • Cottens S.
        • Hof R.
        • et al.
        The immune modulator FTY720 targets sphingosine 1-phosphate receptors.
        J Biol Chem. 2002; 277: 21453-21457
        • Tung D.
        • Cheung P.H.
        • Kaur P.
        • Foreman O.
        • Kavirayani A.
        • Hain H.S.
        • et al.
        Anti-inflammatory and immunomodulatory effects of bortezomib in various in vivo models.
        Pharmacology. 2011; 88: 100-113
        • Czeloth N.
        • Bernhardt G.
        • Hofmann F.
        • Genth H.
        • Forster R.
        Sphingosine-1-phosphate mediates migration of mature dendritic cells.
        J Immunol. 2005; 175: 2960-2967
        • Piskin G.
        • Sylva-Steenland R.M.
        • Bos J.D.
        • Teunissen M.B.
        In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin.
        J Immunol. 2006; 176: 1908-1915
        • Lee E.
        • Trepicchio W.L.
        • Oestreicher J.L.
        • Pittman D.
        • Wang F.
        • Chamian F.
        • et al.
        Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris.
        J Exp Med. 2004; 199: 125-130
        • Lowes M.A.
        • Kikuchi T.
        • Fuentes-Duculan J.
        • Cardinale I.
        • Zaba L.C.
        • Haider A.S.
        • et al.
        Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells.
        J Invest Dermatol. 2008; 128: 1207-1211
        • Liao J.J.
        • Huang M.C.
        • Goetzl E.J.
        Cutting edge: alternative signaling of Th17 cell development by sphingosine 1-phosphate.
        J Immunol. 2007; 178: 5425-5428
        • Roark C.L.
        • French J.D.
        • Taylor M.A.
        • Bendele A.M.
        • Born W.K.
        • O’Brien R.L.
        Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells.
        J Immunol. 2007; 179: 5576-5583
        • Sutton C.E.
        • Lalor S.J.
        • Sweeney C.M.
        • Brereton C.F.
        • Lavelle E.C.
        • Mills K.H.
        Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity.
        Immunity. 2009; 31: 331-341
        • Passos S.T.
        • Silver J.S.
        • O’Hara A.C.
        • Sehy D.
        • Stumhofer J.S.
        • Hunter C.A.
        IL-6 promotes NK cell production of IL-17 during toxoplasmosis.
        J Immunol. 2010; 184: 1776-1783
        • Mandala S.
        • Hajdu R.
        • Bergstrom J.
        • Quackenbush E.
        • Xie J.
        • Milligan J.
        • et al.
        Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists.
        Science (New York, NY). 2002; 296: 346-349