Advertisement
Research Article| Volume 71, ISSUE 2, P130-137, August 2013

Biofilm-forming ability of Staphylococcus aureus strains isolated from human skin

      Abstract

      Background

      Staphylococcus aureus produces various toxins and enzymes, and its presence can exacerbate skin conditions. Previous studies have shown that S. aureus is involved in skin deterioration, even in normal tissue. Biofilm strains show much greater resistance to antimicrobial agents and therefore require a much higher concentration of biocide than planktonic counterparts.

      Objective

      As such, alternative strategies and more effective therapeutic agents against biofilm-producing S. aureus in skin are of great interest. Therefore, we turned our attention to differences in 50 clinical biofilm strains isolated from human facial skin.

      Methods

      Based on S. aureus density on facial skin, we divided donors into two groups: relatively low density (LSG) and high density (HSG). In general, strong biofilm-forming strains were detected in the HSG donors. Two strains from each of the groups were submitted to gene microarray analysis to investigate expression differences and confirmed by RT-PCR.

      Results

      In total, 111 of 7775 genes were differentially expressed between low (SA2 and SA7) vs. high (SA10 and SA33) biofilm-forming clinical strains. These genes include already well-known as biofilm formation related genes like icaABCD and lrgAB, and newly identified genes (sdrC, sspBCP) by RT-PCR. Comparison of gene expression differences between the two groups available at NCBI Gene Expression Omnibus accession number GSE44268.

      Conclusion

      Our results suggest that S. aureus density in the skin is closely related to biofilm-forming ability, and we have identified several potential target genes that may be involved in regulating biofilm formation in situ.

      Abbreviations:

      BF (biofilm), cfu (colony-forming units), CV (crystal violet), Glc (glucose), HSG (high density of S. aureus detected group), LSG (low density of S. aureus detected group), ORF (open reading frame), TSB (tryptic soy broth)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bunikowski R.
        • Mielke M.
        • Skarabis H.
        • Herz U.
        • Bergmann R.L.
        • Wahn U.
        • et al.
        Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis.
        J Allergy Clin Immunol. 1999; 103: 119-124
        • Williams J.V.
        • Vowels B.
        • Honig P.
        • Leyden J.J.
        Staphylococcus aureus isolation from the lesions, the hands, and anterior nares of patients with atopic dermatitis.
        J Emerg Med. 1999; 17: 207-211
        • Shin K.
        • Lee T.R.
        • Lee E.
        • Jung Y.H.
        • Yun Y.
        • Park T.H.
        • et al.
        Staphylococcus aureus in relation to physical, physiological and subjective conditions of apparently normal human skin.
        J Dermatol Sci. 2011; 63: 201-203
        • Costerton J.W.
        • Lewandowski Z.
        • Caldwell D.E.
        • Korber D.R.
        • Lappin-Scott H.M.
        Microbial biofilms.
        Annu Rev Microbiol. 1995; 49: 711-745
        • Hancock V.
        • Witso I.L.
        • Klemm P.
        Biofilm formation as a function of adhesin, growth medium, substratum and strain type.
        Int J Med Microbiol. 2011; 301: 570-576
        • Apilanez I.
        • Gutierrez A.
        • Diaz M.
        Effect of surface materials on initial biofilm development.
        Bioresour Technol. 1998; 66: 225-230
        • Austin J.W.
        • Bergeron G.
        Development of bacterial biofilms in dairy processing lines.
        J Dairy Res. 1995; 62: 509-519
        • Kuchma S.L.
        • O’Toole G.A.
        Surface-induced and biofilm-induced changes in gene expression.
        Curr Opin Biotechnol. 2000; 11: 429-433
        • Cucarella C.
        • Solano C.
        • Valle J.
        • Amorena B.
        • Lasa I.
        • Penades J.R.
        Bap, a Staphylococcus aureus surface protein involved in biofilm formation.
        J Bacteriol. 2001; 183: 2888-2896
        • Davies D.G.
        • Geesey G.G.
        Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture.
        Appl Environ Microbiol. 1995; 61: 860-867
        • Prigent-Combaret C.
        • Vidal O.
        • Dorel C.
        • Lejeune P.
        Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli.
        J Bacteriol. 1999; 181: 5993-6002
        • Youn S.W.
        The role of facial sebum secretion in acne pathogenesis: facts and controversies.
        Clin Dermatol. 2010; 28: 8-11
        • Gross M.
        • Cramton S.E.
        • Gotz F.
        • Peschel A.
        Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces.
        Infect Immun. 2001; 69: 3423-3426
        • Heilmann C.
        • Gerke C.
        • Perdreau-Remington F.
        • Gotz F.
        Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation.
        Infect Immun. 1996; 64: 277-282
        • Eleaume H.
        • Jabbouri S.
        Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth.
        J Microbiol Methods. 2004; 59: 363-370
        • Pfaffl M.W.
        • Horgan G.W.
        • Dempfle L.
        Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR.
        Nucleic Acids Res. 2002; 30: e36
        • Rice K.
        • Peralta R.
        • Bast D.
        • Azavedo J.
        • McGavin M.J.
        Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease.
        Infect Immun. 2001; 69: 159-169
        • Kwon A.S.
        • Park G.C.
        • Ryu S.Y.
        • Lim D.H.
        • Choi C.H.
        • Park Y.
        • et al.
        Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus.
        Int J Antimicrob Agents. 2008; 32: 68-72
        • San Millan R.
        • Elguezabal N.
        • Regulez P.
        • Moragues M.D.
        • Quindos G.
        • Poton J.
        Effect of salivary secretory IgA on the adhesion of Candida albicans to polystyrene.
        Microbiology. 2000; 146: 2105-2112
        • Christensen G.D.
        • Simpson W.A.
        • Younger J.J.
        • Baddour L.M.
        • Barrett F.F.
        • Melton D.M.
        • Beachey E.H.
        Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices.
        J Clin Microbiol. 1985; 22: 996-1006
        • Roy P.
        • Mishra S.
        • Chaudhuri T.K.
        Cloning, sequence analysis, and characterization of a novel β-glucosidase-like activity from Pichia etchellsii.
        Biochem Biophys Res Commun. 2005; 336: 299-308
        • Gerke C.
        • Kraft A.
        • Sussmuth R.
        • Schweitzer O.
        • Gotz F.
        Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin.
        J Biol Chem. 1998; 273: 18586-18593
        • Heilmann C.
        • Schweitzer O.
        • Gerke C.
        • Vanittanakom N.
        • Gotz F.
        Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis.
        Mol Microbiol. 1996; 20: 1083-1091
        • Vancraeynest D.
        • Hermans K.
        • Haesebrouck F.
        Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs.
        Vet Microbiol. 2004; 103: 241-247
        • Ahn S.J.
        • Rice K.C.
        • Oleas J.
        The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals.
        Microbiology. 2010; 156: 3136-3147
        • Wang S.T.
        • Setlow B.
        • Conlon E.M.
        • Lyon J.L.
        • Imamura D.
        • Sato T.
        • et al.
        The forespore line of gene expression in Bacillus subtilis.
        J Mol Biol. 2006; 358: 16-37