Research Article| Volume 71, ISSUE 2, P89-99, August 2013

Functional tight junction barrier localizes in the second layer of the stratum granulosum of human epidermis

  • Kazue Yoshida
    Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan

    Department of Dermatology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
    Search for articles by this author
  • Mariko Yokouchi
    Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan

    Tokyo Electric Power Company Hospital, 9-2 Shinanomachi, Shinjuku, Tokyo 160-0016, Japan
    Search for articles by this author
  • Keisuke Nagao
    Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
    Search for articles by this author
  • Ken Ishii
    Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan

    The First Department of Dermatology, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota, Tokyo 143-8540, Japan
    Search for articles by this author
  • Masayuki Amagai
    Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
    Search for articles by this author
  • Akiharu Kubo
    Corresponding author at: Department of Dermatology, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo 160-8582, Japan. Tel.: +81 3 53633823; fax: +81 3 33516880.
    Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan

    Center for Integrated Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
    Search for articles by this author



      Mammalian epidermis has two diffusion barriers, the stratum corneum (SC) and tight junctions (TJs). We reported previously that a single living cell layer exists between the SC and TJ-forming keratinocytes in mice; however, the exact location of the TJ barrier in human epidermis has not been defined.


      To investigate the precise distribution of epidermal TJs in relation to various cell–cell junction proteins and the SC and to clarify the barrier function of TJs against macromolecules in human skin.


      The localization of various junctional proteins was investigated in human skin sections and in the roofs of bullae formed by ex vivo exfoliative toxin (ET) treatment in three dimensions. ET and single-chain variable fragments (scFv) against desmoglein 1 were used as large diffusion probes.


      Human stratum granulosum (SG) cells have a distinct distribution of TJ, adherens junction, and desmosome proteins in the uppermost three layers (SG1–SG3 from the surface inward). Ex vivo injection of ET or scFv demonstrated that only SG2–SG2 junctions function as a TJ barrier, limiting the inside-out diffusion of these proteins. The roofs of bullae formed by ex vivo ET treatment consisted of SC, SG1 cells, and TJ-forming SG2 cells, probably mimicking bulla formation in bullous impetigo.


      Human epidermis has three SG cell layers with distinct properties just beneath the SC, of which only SG2 cells have functional TJs. Our results suggest that human epidermal TJs between SG2 cells form a paracellular diffusion barrier against soluble proteins, including immunoglobulins and bacterial toxins.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Schempp C.
        • Emde M.
        • Wölfle U.
        Dermatology in the Darwin anniversary. Part 1: Evolution of the integument.
        J Dtsch Dermatol Ges. 2009; 7: 750-757
        • Farquhar M.G.
        • Palade G.E.
        Cell junctions in amphibian skin.
        J Cell Biol. 1965; 26: 263-291
        • Landmann L.
        • Stolinski C.
        • Martin B.
        The permeability barrier in the epidermis of the grass snake during the resting stage of the sloughing cycle.
        Cell Tissue Res. 1981; 215: 369-382
        • Furuse M.
        • Hata M.
        • Furuse K.
        • Yoshida Y.
        • Haratake A.
        • Sugitani Y.
        • et al.
        Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice.
        J Cell Biol. 2002; 156: 1099-1111
        • Kubo A.
        • Nagao K.
        • Yokouchi M.
        • Sasaki H.
        • Amagai M.
        External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers.
        J Exp Med. 2009; 206: 2937-2946
        • Kirschner N.
        • Houdek P.
        • Fromm M.
        • Moll I.
        • Brandner J.M.
        Tight junctions form a barrier in human epidermis.
        Eur J Cell Biol. 2010; 89: 839-842
        • Yuki T.
        • Hachiya A.
        • Kusaka A.
        • Sriwiriyanont P.
        • Visscher M.O.
        • Morita K.
        • et al.
        Characterization of tight junctions and their disruption by UVB in human epidermis and cultured keratinocytes.
        J Invest Dermatol. 2011; 131: 744-752
        • De Benedetto A.
        • Rafaels N.M.
        • McGirt L.Y.
        • Ivanov A.I.
        • Georas S.N.
        • Cheadle C.
        • et al.
        Tight junction defects in patients with atopic dermatitis.
        J Allergy Clin Immunol. 2011; 127: 773-786
        • Mackenzie I.C.
        Ordered structure of the epidermis.
        J Invest Dermatol. 1975; 65: 45-51
        • Mackenzie I.C.
        • Linder J.E.
        An examination of cellular organization within the stratum corneum by a silver staining method.
        J Invest Dermatol. 1973; 61: 245-250
        • Christophers E.
        Cellular architecture of the stratum corneum.
        J Invest Dermatol. 1971; 56: 165-169
        • Mackenzie I.C.
        Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis.
        Nature. 1970; 226: 653-655
        • Mackenzie I.C.
        • Zimmerman K.
        • Peterson L.
        The pattern of cellular organization of human epidermis.
        J Invest Dermatol. 1981; 76: 459-461
        • Kligman A.M.
        A brief history of how the dead stratum corneum became alive.
        in: Elias P.M. Feingold K.R. Skin barrier. Taylor & Francis Group, London2006: 15-24
        • Ishida-Yamamoto A.
        • Kishibe M.
        • Murakami M.
        • Honma M.
        • Takahashi H.
        • Iizuka H.
        Lamellar granule secretion starts before the establishment of tight junction barrier for paracellular tracers in mammalian epidermis.
        PLoS ONE. 2012; 7: e31641
        • Ouchi T.
        • Kubo A.
        • Yokouchi M.
        • Adachi T.
        • Kobayashi T.
        • Kitashima D.
        • et al.
        Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome.
        J Exp Med. 2011; 208: 2607-2613
        • Hashimoto K.
        Intercellular spaces of the human epidermis as demonstrated with lanthanum.
        J Invest Dermatol. 1971; 57: 17-31
        • Chen Y.
        • Merzdorf C.
        • Paul D.L.
        • Goodenough D.A.
        COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos.
        J Cell Biol. 1997; 138: 891-899
        • Ishii K.
        • Lin C.
        • Siegel D.L.
        • Stanley J.R.
        Isolation of pathogenic monoclonal anti-desmoglein 1 human antibodies by phage display of pemphigus foliaceus autoantibodies.
        J Invest Dermatol. 2008; 128: 939-948
        • Hanakawa Y.
        • Schechter N.M.
        • Lin C.
        • Garza L.
        • Li H.
        • Yamaguchi T.
        • et al.
        Molecular mechanisms of blister formation in bullous impetigo and staphylococcal scalded skin syndrome.
        J Clin Invest. 2002; 110: 53-60
        • Cavarelli J.
        • Prévost G.
        • Bourguet W.
        • Moulinier L.
        • Chevrier B.
        • Delagoutte B.
        • et al.
        The structure of Staphylococcus aureus epidermolytic toxin A, an atypic serine protease, at 1.7 Å resolution.
        Structure. 1997; 5: 813-824
        • Vath G.M.
        • Earhart C.A.
        • Rago J.V.
        • Kim M.H.
        • Bohach G.A.
        • Schlievert P.M.
        • et al.
        The structure of the superantigen exfoliative toxin A suggests a novel regulation as a serine protease.
        Biochemistry. 1997; 36: 1559-1566
        • Meder D.
        • Shevchenko A.
        • Simons K.
        • Füllekrug J.
        Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells.
        J Cell Biol. 2005; 168: 303-313
        • Itoh M.
        • Yonemura S.
        • Nagafuchi A.
        • Tsukita S.
        • Tsukita S.
        A 220-kD undercoat-constitutive protein: its specific localization at cadherin-based cell–cell adhesion sites.
        J Cell Biol. 1991; 115: 1449-1462
        • Nagafuchi A.
        • Tsukita S.
        The loss of the expression of alpha catenin, the 102 kD cadherin associated protein, in central nervous tissues during development.
        Dev Growth Differ. 1994; 36: 59-71
        • Saitou M.
        • Ando-Akatsuka Y.
        • Itoh M.
        • Furuse M.
        • Inazawa J.
        • Fujimoto K.
        • et al.
        Mammalian occludin in epithelial cells: its expression and subcellular distribution.
        Eur J Cell Biol. 1997; 73: 222-231
        • Brandner J.M.
        • Kief S.
        • Grund C.
        • Rendl M.
        • Houdek P.
        • Kuhn C.
        • et al.
        Organization and formation of the tight junction system in human epidermis and cultured keratinocytes.
        Eur J Cell Biol. 2002; 81: 253-263
        • Pummi K.
        • Malminen M.
        • Aho H.
        • Karvonen S.L.
        • Peltonen J.
        • Peltonen S.
        Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes.
        J Invest Dermatol. 2001; 117: 1050-1058
        • Schlüter H.
        • Wepf R.
        • Moll I.
        • Franke W.W.
        Sealing the live part of the skin: the integrated meshwork of desmosomes, tight junctions and curvilinear ridge structures in the cells of the uppermost granular layer of the human epidermis.
        Eur J Cell Biol. 2004; 83: 655-665
        • Takai Y.
        • Ikeda W.
        • Ogita H.
        • Rikitake Y.
        The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin.
        Annu Rev Cell Dev Biol. 2008; 24: 309-342
        • Doyonnas R.
        • Kershaw D.B.
        • Duhme C.
        • Merkens H.
        • Chelliah S.
        • Graf T.
        • et al.
        Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin.
        J Exp Med. 2001; 194: 13-27
        • McNagny K.M.
        • Pettersson I.
        • Rossi F.
        • Flamme I.
        • Shevchenko A.
        • Mann M.
        • et al.
        Thrombomucin, a novel cell surface protein that defines thrombocytes and multipotent hematopoietic progenitors.
        J Cell Biol. 1997; 138: 1395-1407
        • Sassetti C.
        • Tangemann K.
        • Singer M.S.
        • Kershaw D.B.
        • Rosen S.D.
        Identification of podocalyxin-like protein as a high endothelial venule ligand for l-selectin: parallels to CD34.
        J Exp Med. 1998; 187: 1965-1975
        • Amagai M.
        • Matsuyoshi N.
        • Wang Z.H.
        • Andl C.
        • Stanley J.R.
        Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1.
        Nat Med. 2000; 6: 1275-1277
        • Amagai M.
        • Yamaguchi T.
        • Hanakawa Y.
        • Nishifuji K.
        • Sugai M.
        • Stanley J.R.
        Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1.
        J Invest Dermatol. 2002; 118: 845-850
        • Nishifuji K.
        • Shimizu A.
        • Ishiko A.
        • Iwasaki T.
        • Amagai M.
        Removal of amino-terminal extracellular domains of desmoglein 1 by staphylococcal exfoliative toxin is sufficient to initiate epidermal blister formation.
        J Dermatol Sci. 2010; 59: 184-191
        • Anderson J.M.
        • Van Itallie C.M.
        Physiology and function of the tight junction.
        Cold Spring Harb Perspect Biol. 2009; 1: a002584
        • Cereijido M.
        • Contreras R.G.
        • Shoshani L.
        • Flores-Benitez D.
        • Larre I.
        Tight junction and polarity interaction in the transporting epithelial phenotype.
        Biochim Biophys Acta. 2008; 1778: 770-793
        • Ovaere P.
        • Lippens S.
        • Vandenabeele P.
        • Declercq W.
        The emerging roles of serine protease cascades in the epidermis.
        Trends Biochem Sci. 2009; 34: 453-463
        • Candi E.
        • Schmidt R.
        • Melino G.
        The cornified envelope: a model of cell death in the skin.
        Nat Rev Mol Cell Biol. 2005; 6: 328-340
        • Schlüter H.
        • Moll I.
        • Wolburg H.
        • Franke W.W.
        The different structures containing tight junction proteins in epidermal and other stratified epithelial cells, including squamous cell metaplasia.
        Eur J Cell Biol. 2007; 86: 645-655
        • Ando-Akatsuka Y.
        • Yonemura S.
        • Itoh M.
        • Furuse M.
        • Tsukita S.
        Differential behavior of E-cadherin and occludin in their colocalization with ZO-1 during the establishment of epithelial cell polarity.
        J Cell Physiol. 1999; 179: 115-125
        • Hirschmann J.V.
        Impetigo: etiology and therapy.
        in: Remington J.S. Swartz M.N. Current clinical topics in infectious diseases. Blackwell Publishing, Inc., Malden, MA2002: 42-51
        • Schröder J.M.
        • Harder J.
        Antimicrobial skin peptides and proteins.
        Cell Mol Life Sci. 2006; 63: 469-486
        • Schittek B.
        • Hipfel R.
        • Sauer B.
        • Bauer J.
        • Kalbacher H.
        • Stevanovic S.
        • et al.
        Dermcidin: a novel human antibiotic peptide secreted by sweat glands.
        Nat Immunol. 2001; 2: 1133-1137
        • Braff M.H.
        • Di Nardo A.
        • Gallo R.L.
        Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies.
        J Invest Dermatol. 2005; 124: 394-400
        • Aberg K.M.
        • Man M.-Q.
        • Gallo R.L.
        • Ganz T.
        • Crumrine D.
        • Brown B.E.
        • et al.
        Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers.
        J Invest Dermatol. 2008; 128: 917-925
        • Oren A.
        • Ganz T.
        • Liu L.
        • Meerloo T.
        In human epidermis, beta-defensin 2 is packaged in lamellar bodies.
        Exp Mol Pathol. 2003; 74: 180-182
        • Kubo A.
        • Nagao K.
        • Amagai M.
        Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases.
        J Clin Invest. 2012; 122: 440-447
        • Travers J.B.
        • Norris D.A.
        • Leung D.Y.
        The keratinocyte as a target for staphylococcal bacterial toxins.
        J Investig Dermatol Symp Proc. 2001; 6: 225-230
        • Iwatsuki K.
        • Yamasaki O.
        • Morizane S.
        • Oono T.
        Staphylococcal cutaneous infections: invasion, evasion and aggression.
        J Dermatol Sci. 2006; 42: 203-214
        • Anderson J.M.
        Molecular structure of tight junctions and their role in epithelial transport.
        News Physiol Sci. 2001; 16: 126-130