Advertisement
Research Article| Volume 71, ISSUE 3, P195-202, September 2013

Correlation of increased MYG1 expression and its promoter polymorphism with disease progression and higher susceptibility in vitiligo patients

      Abstract

      Background

      MYG1 (Melanocyte proliferating gene 1 or C12orf10) -119C/G promoter and Arg4Gln structural polymorphisms have a functional impact on its regulation. The promoter polymorphism was shown to be associated with vitiligo in Caucasian population.

      Objective

      The present study explores MYG1 polymorphisms and correlates them with MYG1 mRNA expression, disease onset and progression in vitiligo patients.

      Methods

      Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used for genotyping of MYG1 -119C/G promoter (rs1465073) and 11-12AA/GC structural polymorphisms (rs1534284-rs1534283; Arg4Gln) in 846 vitiligo patients and 726 age-matched unaffected controls. MYG1 mRNA levels were assessed in whole blood of 166 patients and 175 controls by Real-time PCR.

      Results

      The MYG1 -119C/G promoter polymorphism was found to be in significant association with vitiligo being ‘G’ allele prevalent in patients. However, 11-12AA/GC structural polymorphism was prevalently monogenic in patients and controls with only MYG1 GC (4Arg) allele being present. Significant increase in MYG1 mRNA expression was observed in vitiligo patients compared to controls. The MYG1 mRNA expression was increased in patients with active and generalized vitiligo as compared to stable and localized vitiligo. MYG1 mRNA expression was increased in patients with susceptible -119 GG genotype compared to controls. Also, patients with susceptible -119 GG genotype had early age of onset of vitiligo. Moreover, patients with age groups 1–20 years and 21–40 years showed increased expression of MYG1 mRNA compared to those of controls. Female patients showed significant increase in MYG1 mRNA and early age of onset of vitiligo compared to male patients.

      Conclusion

      The present study suggests that MYG1 -119C/G promoter polymorphism may be a genetic risk factor for susceptibility and progression of vitiligo. The up-regulation of MYG1 transcript in patients with susceptible -119GG genotype advocates the crucial role of MYG1 in autoimmune pathogenesis of vitiligo.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ortonne J.P.
        • Bose S.K.
        Vitiligo: where do we stand?.
        Pigment Cell Res. 1993; 8: 61-72
        • Taieb A.
        • Picardo M.
        • VETF Members
        The definition and assessment of vitiligo: a consensus report of the vitiligo European Task Force.
        Pigment Cell Res. 2007; 20: 27-35
        • Handa S.
        • Kaur I.
        Vitiligo: clinical findings in 1436 patients.
        J Dermatol. 1999; 10: 653-657
        • Shajil E.M.
        • Chatterjee S.
        • Agrawal D.
        • Bagchi T.
        • Begum R.
        Vitiligo: pathomechanisms and genetic polymorphism of susceptible genes.
        Ind J Exp Biol. 2006; 44: 526-539
        • Kemp E.H.
        • Waterman E.A.
        • Weetman A.P.
        Immunological pathomechanisms in vitiligo.
        Expert Rev Mol Med. 2001; 23: 1
        • Rosenberg S.A.
        Cancer vaccines based on the identification of genes encoding cancer regression antigens.
        Immunol Today. 1997; 18: 175-182
        • Spritz R.A.
        Recent progress in the genetics of generalized vitiligo.
        J Genet Genom. 2011; 38: 271-278
        • Spritz R.A.
        The genetics of generalized vitiligo and associated autoimmune diseases.
        Pigment Cell Res. 2007; 20: 271-278
        • Spritz R.A.
        The genetics of generalized vitiligo.
        Curr Dir Autoimmun. 2008; 10: 244-257
        • Spritz R.A.
        The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma.
        Genome Med. 2010; 2: 78
        • Smicun Y.
        The human homologue of MYG1 the highly conserved gene from autonomously proliferating mouse melanocytes.
        Swiss Institute of Bioinformatics, 2000
        • Philips M.A.
        • Vikesaa J.
        • Luuk H.
        • Jonson L.
        • Lilleväli K.
        • Rehfeld J.F.
        • et al.
        Characterization of MYG1 gene and protein: subcellular distribution and function.
        Biol Cell. 2009; 101: 361-373
        • Kingo K.
        • Philips M.A.
        • Aunin E.
        • Luuk H.
        • Karelson M.
        • Rätsep R.
        • et al.
        MYG1, novel melanocyte related gene, has elevated expression in vitiligo.
        J Dermatol Sci. 2006; 44: 119-122
        • Hawse J.R.
        • Hejtmancik J.F.
        • Huang Q.
        • Sheets N.L.
        • Hosack D.A.
        • Lempicki R.
        • et al.
        Identification and functional clustering of global gene expression differences between human age-related cataract and clear lenses.
        Mol Vis. 2003; 9: 515-537
        • Kõks S.
        • Luuk H.
        • Nelovkov A.
        • Areda T.
        • Vasar E.
        A screen for genes induced in the amygdaloid area during cat odor exposure.
        Genes Brain Behav. 2004; 3: 80-89
        • Nepomuceno-Silva J.L.
        • De Melo L.D.
        • Mendonça S.M.
        • Paixão J.C.
        • Lopes U.G.
        Characterization of Trypanosoma cruzi TcRjl locus and analysis of its transcript.
        Parasitology. 2004; 129: 325-333
        • Sääf A.M.
        • Tengvall-Linder M.
        • Chang H.Y.
        • Adler A.S.
        • Wahlgren C.F.
        • Scheynius A.
        • et al.
        Global expression profiling in atopic eczema reveals reciprocal expression of inflammatory and lipid genes.
        PLoS ONE. 2008; 3: e4017
        • Philips M.A.
        • Kingo K.
        • Karelson M.
        • Rätsep R.
        • Aunin E.
        • Reimann E.
        • et al.
        Promoter polymorphism -119C/G in MYG1 (C12orf10) gene is related to vitiligo susceptibility and Arg4Gln affects mitochondrial entrance of Myg1.
        BMC Med Genet. 2010; 11: 56
        • Faul F.
        • Erdfelder E.
        • Lang A.G.
        • Buchner A.
        G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
        Behav Res Methods. 2007; 39: 175-191
        • Zhang X.J.
        • Chen J.J.
        • Liu J.B.
        The genetic concept of vitiligo.
        J Dermatol Sci. 2005; 39: 137-146
        • Nordlund J.J.
        The epidemiology and genetics of vitiligo.
        Clin Dermatol. 1997; 15: 875-878
        • Kim S.M.
        • Chung H.S.
        • Hann S.K.
        The genetics of vitiligo in Korean patients.
        Int J Dermatol. 1998; 37: 908-910
        • Shajil E.M.
        • Agrawal D.
        • Vagadia K.
        • Marfatia Y.S.
        • Begum R.
        Vitiligo: clinical profiles in Vadodara, Gujarat.
        Ind J Dermatol. 2006; 51: 100-104
        • Ochi Y.
        • DeGroot L.J.
        Vitiligo in Graves’ disease.
        Ann Intern Med. 1969; 71: 935-940
        • Baharav E.
        • Merimski O.
        • Shoenfeld Y.
        • Zigelman R.
        • Gilbrud B.
        • Yecheskel G.
        • et al.
        Tyrosinase as an autoantigen in patients with vitiligo.
        Clin Exp Immunol. 1996; 105: 84-88
        • Kemp E.H.
        • Gawkrodger D.J.
        • MacNeil S.
        • Watson P.F.
        • Weetman A.P.
        Detection of tyrosinase autoantibodies in vitiligo patients using 35S-labelled recombinant human tyrosinase in a radioimmunoassay.
        J Invest Dermatol. 1997; 109: 69-73
        • Shajil M.
        Biochemical basis and genetic association studies of selected single nucleotide polymorphisms in catalase and glutathione peroxidase genes in vitiligo.
        The M.S. University of Baroda, Vadodara, Gujarat, India2007 ([Ph.D. thesis])
        • Singh A.
        • Sharma P.
        • Kar H.K.
        • Sharma V.K.
        • Tembhre M.K.
        • Gupta S.
        • et al.
        HLA alleles and amino acid signatures of the peptide binding pockets of HLA molecules in vitiligo.
        J Invest Dermatol. 2012; 132: 124-134
        • Birlea S.A.
        • Ahmad F.J.
        • Uddin R.M.
        • Ahmad S.
        • Pal S.S.
        • Begum R.
        • et al.
        Association of generalized vitiligo with HLA class II loci in patients from the Indian subcontinent.
        J Invest Dermatol. 2013; 133: 1369-1372
        • Dwivedi M.
        • Laddha N.C.
        • Imran M.
        • Shah B.J.
        • Begum R.
        Cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) in isolated vitiligo: a genotype-phenotype correlation.
        Pigment Cell Melanoma Res. 2011; 24: 737-740
        • Imran M.
        • Laddha N.C.
        • Dwivedi M.
        • Mansuri M.S.
        • Singh J.
        • Rani R.
        • et al.
        Interleukin-4 genetic variants correlate with its transcript and protein levels in vitiligo patients.
        Brit J Dermatol. 2012; 167: 314-323
        • Laddha N.C.
        • Dwivedi M.
        • Begum R.
        Increased tumor necrosis factor (TNF)-α and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo.
        PLoS ONE. 2012; 7: e52298
        • Shajil E.M.
        • Laddha N.C.
        • Chatterjee S.
        • Gani A.R.
        • Malek R.A.
        • Shah B.J.
        • et al.
        Association of catalase T/C exon 9 and glutathione peroxidase codon 200 polymorphisms in relation to their activities and oxidative stress with vitiligo susceptibility in Gujarat population.
        Pigment Cell Res. 2007; 20: 405-407
        • Dwivedi M.
        • Gupta K.
        • Gulla K.C.
        • Laddha N.C.
        • Hajela K.
        • Begum R.
        Lack of genetic association of promoter and structural variants of mannan-binding lectin (MBL2) gene with susceptibility to generalized vitiligo.
        Brit J Dermatol. 2009; 161: 63-69
        • Dwivedi M.
        • Laddha N.C.
        • Shajil E.M.
        • Shah B.J.
        • Begum R.
        The ACE gene I/D polymorphism is not associated with generalized vitiligo susceptibility in Gujarat population.
        Pigment Cell Melanoma Res. 2008; 21: 407-408
        • Laddha N.C.
        • Dwivedi M.
        • Shajil E.M.
        • Prajapati H.
        • Marfatia Y.S.
        • Begum R.
        Association of PTPN22 1858C/T polymorphism with vitiligo susceptibility in Gujarat population.
        J Dermatol Sci. 2008; 49: 260-262
        • Su A.I.
        • Wiltshire T.
        • Batalov S.
        • Lapp H.
        • Ching K.A.
        • Block D.
        • et al.
        A gene atlas of the mouse and human protein-encoding transcriptomes.
        Proc Natl Acad Sci U.S.A. 2004; 101: 6062-6067
        • Liang W.S.
        • Dunckley T.
        • Beach T.G.
        • Grover A.
        • Mastroeni D.
        • Ramsey K.
        • et al.
        Altered neuronal gene expression in brain regions differentially affected by Alzheimer's disease: a reference data set.
        Physiol Genomics. 2008; 33: 240-256
        • Rickhag M.
        • Wieloch T.
        • Gidö G.
        • Elmér E.
        • Krogh M.
        • Murray J.
        • et al.
        Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue.
        J Neurochem. 2006; 96: 14-29
        • Lü X.
        • Bao X.
        • Huang Y.
        • Qu Y.
        • Lu H.
        • Lu Z.
        Mechanisms of cytotoxicity of nickel ions based on gene expression profiles.
        Biomaterials. 2009; 30: 141-148
        • Zárate-Bladés C.R.
        • Bonato V.L.
        • da Silveira E.L.
        • Oliveira e Paula M.
        • Junta C.M.
        • Sandrin-Garcia P.
        • et al.
        Comprehensive gene expression profiling in lungs of mice infected with Mycobacterium tuberculosis following DNAhsp65 immunotherapy.
        J Gene Med. 2009; 11: 66-78
        • Westerhof W.
        • d’Ischia M.
        Vitiligo puzzle: the pieces fall in place.
        Pigment Cell Res. 2007; 20: 345-359
        • Schallreuter K.U.
        • Chiuchiarelli G.
        • Cemeli E.
        • Elwary S.M.
        • Gillbro J.M.
        • Spencer J.D.
        • et al.
        Estrogens can contribute to hydrogen peroxide generation and quinone-mediated DNA damage in peripheral blood lymphocytes from patients with vitiligo.
        J Invest Dermatol. 2006; 126: 1036-1042
        • Cheng A.S.
        • Jin V.X.
        • Fan M.
        • Smith L.T.
        • Liyanarachchi S.
        • Yan P.S.
        • et al.
        Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters.
        Mol Cell. 2006; 21: 393-404
        • Philips M.A.
        • Abramov U.
        • Lilleväli K.
        • Luuk H.
        • Kurrikoff K.
        • Raud S.
        • et al.
        Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences.
        Behav Brain Res. 2010; 207: 182-195
        • Whitacre C.C.
        Sex differences in autoimmune disease.
        Nat Immunol. 2001; 2: 777-780
        • Panchanathan R.
        • Choubey D.
        Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity.
        Mol Immunol. 2012; 53: 15-23
        • Afshan G.
        • Afzal N.
        • Qureshi S.
        CD4+CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases.
        Clin Lab. 2012; 58: 567-571
        • Esfandiarpour I.
        • Farajzadeh S.
        Clinical characteristics of late-onset vitiligo in an Iranian population.
        Dermatologica Sinica. 2012; 30: 43e46
        • Cao S.
        • Xiang Z.
        • Ma X.
        Global gene expression profiling in interleukin-12-induced activation of CD8(+) cytotoxic T lymphocytes against mouse mammary carcinoma.
        Cell Mol Immunol. 2004; 1: 357-366
        • Taylor M.W.
        • Grosse W.M.
        • Schaley J.E.
        • Sanda C.
        • Wu X.
        • Chien S.C.
        • et al.
        Global effect of PEG-IFN-α and ribavirin on gene expression in PBMC invitro.
        J Interferon Cytokine Res. 2004; 24: 107-118
        • Axelsson H.
        • Lönnroth C.
        • Andersson M.
        • Wang W.
        • Lundholm K.
        Global tumor RNA expression in early establishment of experimental tumor growth and related angiogenesis following COX-inhibition evaluated by microarray analysis.
        Cancer Informatics. 2007; 2: 199-213