Advertisement
Invited review article| Volume 73, ISSUE 2, P91-100, February 2014

Download started.

Ok

Future treatment options for atopic dermatitis – Small molecules and beyond

Published:December 23, 2013DOI:https://doi.org/10.1016/j.jdermsci.2013.11.009

      Abstract

      Atopic dermatitis (AD) is a common eczematous skin disease with a chronic and relapsing course. Current therapeutic options for moderate to severe AD in children and adults are unsatisfactory. Along with the success of basic research to define pathogenesis-related targets, novel small molecule inhibitors and biologics for the treatment of AD have been developed.
      These compounds focus on the specific reduction of pruritus, interfere with the pro-allergic Th2-deviation of the immune system or inhibit inflammatory pathways in the skin. Based on studies registered at ClinicalTrials.gov we present novel treatment strategies of AD, their molecular mechanisms of action, and discuss the current status of the clinical results. As many of the new compounds target pathogenesis-related traits of the disease, we face a new era in the treatment and understanding of AD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Denby K.S.
        • Beck L.A.
        Update on systemic therapies for atopic dermatitis.
        Curr Opin Allergy Clin Immunol. 2012; 12: 421-426
        • Bieber T.
        Atopic dermatitis.
        N Engl J Med. 2008; 358: 1483-1494
        • Mihara K.
        • Kuratani K.
        • Matsui T.
        • Nakamura M.
        • Yokota K.
        Vital role of the itch-scratch response in development of spontaneous dermatitis in NC/Nga mice.
        Br J Dermatol. 2004; 151: 335-345
      1. Ong PY. Emerging drugs for atopic dermatitis. Expert Opin Emerg Drugs 2009.

        • Darsow U.
        • Wollenberg A.
        • Simon D.
        • Taieb A.
        • Werfel T.
        • Oranje A.
        • et al.
        ETFAD/EADV eczema task force 2009 position paper on diagnosis and treatment of atopic dermatitis.
        J Eur Acad Dermatol Venereol. 2010; 24: 317-328
        • Leung D.Y.M.
        • Boguniewicz M.
        • Howell M.D.
        • Nomura I.
        • Hamid Q.A.
        New insights into atopic dermatitis.
        J Clin Invest. 2004; 113: 651-657
        • Gittler J.K.
        • Shemer A.
        • Suarez-Farinas M.
        • Fuentes-Duculan J.
        • Gulewicz K.J.
        • Wang C.Q.
        • et al.
        Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis.
        J Allergy Clin Immunol. 2012; 130: 1344-1354
        • Bowcock A.M.
        • Cookson W.O.C.M.
        The genetics of psoriasis, psoriatic arthritis and atopic dermatitis.
        Hum Mol Genet. 2004; 13: R43-R55
        • Palmer C.N.A.
        • Irvine A.D.
        • Terron-Kwiatkowski A.
        • Zhao Y.
        • Liao H.
        • Lee S.P.
        • et al.
        Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.
        Nat Genet. 2006; 38: 441-446
        • Ikoma A.
        • Steinhoff M.
        • Ständer S.
        • Yosipovitch G.
        • Schmelz M.
        The neurobiology of itch.
        Nat Rev Neurosci. 2006; 7: 535-547
        • Conti M.
        • Beavo J.
        Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling.
        Annu Rev Biochem. 2007; 76: 481-511
        • Schett G.
        • Sloan V.S.
        • Stevens R.M.
        • Schafer P.
        Apremilast: a novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases.
        Ther Adv Musculoskelet Dis. 2010; 2: 271
        • Eigler A.
        • Siegmund B.
        • Emmerich U.
        • Baumann K.H.
        • Hartmann G.
        • Endres S.
        Anti-inflammatory activities of cAMP-elevating agents: enhancement of IL-10 synthesis and concurrent suppression of TNF production.
        J Leukoc Biol. 1998; 63: 101-107
        • Essayan D.M.
        • Huang S.K.
        • Kagey-Sobotka A.
        • Lichtenstein L.M.
        Differential efficacy of lymphocyte-and monocyte-selective pretreatment with a type 4 phosphodiesterase inhibitor on antigen-driven proliferation and cytokine gene expression.
        J Allergy Clin Immunol. 1997; 99: 28-37
        • Essayan D.M.
        • Huang S.K.
        • Undem B.J.
        • Kagey-Sobotka A.
        • Lichtenstein L.M.
        Modulation of antigen-and mitogen-induced proliferative responses of peripheral blood mononuclear cells by nonselective and isozyme selective cyclic nucleotide phosphodiesterase inhibitors.
        J Immunol. 1994; 153: 3408
        • Schafer P.
        • Parton A.
        • Gandhi A.
        • Capone L.
        • Adams M.
        • Wu L.
        • et al.
        Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis.
        Br J Pharmacol. 2010; 159: 842-855
        • Gottlieb A.
        • Strober B.
        • Krueger J.
        • Rohane P.
        • Zeldis J.
        • Hu C.
        • et al.
        An open-label, single-arm pilot study in patients with severe plaque-type psoriasis treated with an oral anti-inflammatory agent, apremilast.
        Curr Med Res Opin. 2008; 24: 1529-1538
        • Samrao A.
        • Berry T.M.
        • Goreshi R.
        • Simpson E.L.
        A pilot study of an oral phosphodiesterase inhibitor (Apremilast) for atopic dermatitis in adults.
        Arch Dermatol. 2012; 148: 890-897
        • Volf E.
        • Au S.
        • Dumont N.
        • Scheinman P.
        • Gottlieb A.
        A phase 2, open-label, investigator-initiated study to evaluate the safety and efficacy of apremilast in subjects with recalcitrant allergic contact or atopic dermatitis.
        J Drugs Dermatol. 2012; 11: 341
        • Nazarian R.
        • Weinberg J.M.
        AN-2728, a PDE4 inhibitor for the potential topical treatment of psoriasis and atopic dermatitis.
        Curr Opin Investig Drugs. 2009; 10: 1236
        • Nakamura H.
        • Aoki M.
        • Tamai K.
        • Oishi M.
        • Ogihara T.
        • Kaneda Y.
        • et al.
        Prevention and regression of atopic dermatitis by ointment containing NF-κB decoy oligodeoxynucleotides in NC/Nga atopic mouse model.
        Gene Therapy. 2002; 9: 1221
        • Dajee M.
        • Muchamuel T.
        • Schryver B.
        • Oo A.
        • Alleman-Sposeto J.
        • De Vry C.G.
        • et al.
        Blockade of experimental atopic dermatitis via topical NF-κB decoy oligonucleotide.
        J Invest Dermatol. 2006; 126: 1792-1803
        • Schäcke H.
        • Zollner T.
        • Döcke W.
        • Rehwinkel H.
        • Jaroch S.
        • Skuballa W.
        • et al.
        Characterization of ZK 245186, a novel, selective glucocorticoid receptor agonist for the topical treatment of inflammatory skin diseases.
        Brit J Pharmacol. 2009; 158: 1088-1103
        • Cavet M.E.
        • Harrington K.L.
        • Ward K.W.
        • Zhang J.Z.
        Mapracorat, a novel selective glucocorticoid receptor agonist, inhibits hyperosmolar-induced cytokine release and MAPK pathways in human corneal epithelial cells.
        Mol Vis. 2010; 16: 1791-1800
        • Gibbs N.K.
        • Tye J.
        • Norval M.
        Recent advances in urocanic acid photochemistry, photobiology and photoimmunology.
        Photochem Photobiol Sci. 2008; 7: 655-667
        • Norval M.
        • Simpson T.
        • Bardshiri E.
        • Crosby J.
        Quantification of uranic acid isomers in human stratum corneum.
        Photodermatology. 1989; 6: 142-145
        • Prater M.
        • Blaylock B.
        • Holladay S.
        Molecular mechanisms of cis-urocanic acid and permethrin-induced alterations in cutaneous immunity.
        Photodermatol Photoimmunol Photomed. 2003; 19: 287-294
        • Lauerma A.
        • Aioi A.
        • Maibach H.
        Topical cis-urocanic acid suppresses both induction and elicitation of contact hypersensitivity in BALB/C mice.
        Acta Derm Venereol. 1995; 75: 272
        • Kaneko K.
        • Smetana-Just U.
        • Matsui M.
        • Young A.R.
        • John S.
        • Norval M.
        • et al.
        cis-Urocanic acid initiates gene transcription in primary human keratinocytes.
        J Immunol. 2008; 181: 217
        • Kaneko K.
        • Walker S.L.
        • Lai-Cheong J.
        • Matsui M.S.
        • Norval M.
        • Young A.R.
        cis-Urocanic acid enhances prostaglandin E2 release and apoptotic cell death via reactive oxygen species in human keratinocytes.
        J Investig Dermatol. 2011; 131: 1262-1271
        • Shreedhar V.
        • Giese T.
        • Sung V.W.
        • Ullrich S.E.
        A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression.
        J Immunol. 1998; 160: 3783
        • Harriott-Smith T.G.
        • Halliday W.
        Suppression of contact hypersensitivity by short-term ultraviolet irradiation: II. The role of urocanic acid.
        Clin Exp Immunol. 1988; 72: 174
        • Hart P.H.
        • Grimbaldeston M.A.
        • Finlay-Jones J.J.
        Mast cells in UV-B-induced immunosuppression.
        J Photochem Photobiol B: Biol. 2000; 55: 81-87
        • Kivistö K.
        • Punnonen K.
        • Toppari J.
        • Leino L.
        Urocanic acid suppresses the activation of human neutrophils in vitro.
        Inflammation. 1996; 20: 451-459
        • Rinaldi M.
        • Moroni P.
        • Leino L.
        • Laihia J.
        • Paape M.
        • Bannerman D.D.
        Effect of cis-urocanic acid on bovine neutrophil generation of reactive oxygen species.
        J Dairy Sci. 2006; 89: 4188-4201
        • Filipec M.
        • Letko E.
        • Hašková Z.
        • Jeníčková D.
        • Holler P.
        • Jančárek A.
        • et al.
        The effect of urocanic acid on graft rejection in an experimental model of orthotopic corneal transplantation in rabbits.
        Graefes Arch Clin Exp Ophthalmol. 1998; 236: 65-68
        • Dahl M.V.
        • McEwen Jr., G.N.
        • Katz H.I.
        Urocanic acid suppresses induction of immunity in human skin.
        Photodermatol Photoimmunol Photomed. 2010; 26: 303-310
        • Bissonnette R.
        • Chen G.
        • Bolduc C.
        • Maari C.
        • Lyle M.
        • Tang L.
        • et al.
        Efficacy and safety of topical WBI-1001 in the treatment of atopic dermatitis: results from a phase 2A, randomized, placebo-controlled clinical trial.
        Arch Dermatol. 2010; 146: 446
        • Bissonnette R.
        • Poulin Y.
        • Zhou Y.
        • Tan J.
        • Hong H.
        • Webster J.
        • et al.
        Efficacy and safety of topical WBI-1001 in patients with mild to severe atopic dermatitis: results from a 12-week, multicenter, randomized, placebo-controlled double-blind trial.
        Brit J Dermatol. 2011;
        • Miller G.T.
        • Hochman P.S.
        • Meier W.
        • Tizard R.
        • Bixler S.A.
        • Rosa M.D.
        • et al.
        Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses.
        J Exp Med. 1993; 178: 211-222
        • Bierer’t B.E.
        • Burakoff S.J.
        T cell receptors: adhesion and signaling.
        Adv Cancer Res. 1991; 56: 49
        • Dustin M.L.
        • Springer T.A.
        Role of lymphocyte adhesion receptors in transient interactions and cell locomotion.
        Ann Rev Immunol. 1991; 9: 27-66
        • Jenkins M.K.
        • Taylor P.S.
        • Norton S.D.
        • Urdahl K.B.
        CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells.
        J Immunol. 1991; 147: 2461
        • Cooper J.C.
        • Morgan G.
        • Harding S.
        • Subramanyam M.
        • Majeau G.R.
        • Moulder K.
        • et al.
        Alefacept selectively promotes NK cell-mediated deletion of CD45R0+ human T cells.
        Eur J Immunol. 2003; 33: 666-675
        • Moul D.K.
        • Routhouska S.B.
        • Robinson M.R.
        • Korman N.J.
        Alefacept for moderate to severe atopic dermatitis: a pilot study in adults.
        J Am Acad Dermatol. 2008; 58: 984-989
        • Simon D.
        • Wittwer J.
        • Kostylina G.
        • Buettiker U.
        • Simon H.-U.
        • Yawalkar N.
        Alefacept (lymphocyte function-associated molecule 3/IgG fusion protein) treatment for atopic eczema.
        J Allergy Clin Immunol. 2008; 122: 423-424
        • Wenzel S.
        • Ford L.
        • Pearlman D.
        • Spector S.
        • Sher L.
        • Skobieranda F.
        • et al.
        Dupilumab in persistent asthma with elevated eosinophil levels.
        N Engl J Med. 2013;
        • Radin A.
        • Ren H.
        • Papino-Wood P.
        • Chaudhry U.
        • Hamilton J.D.
        First-in-human study of REGN668/SAR231893 (IL-4Rα mAb): safety, tolerability and biomarker results of a randomized, double-blind, placebo-controlled, single ascending dose study in healthy volunteers.
        J Allergy Clin Immunol. 2013; 131: AB158
        • Wenzel S.
        • Wilbraham D.
        • Fuller R.
        • Getz E.B.
        • Longphre M.
        Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies.
        Lancet. 2007; 370: 1422-1431
        • Groves R.
        • Wilbraham D.
        • Fuller R.
        • Longphre M.
        Inhibition of IL-4 and IL-13 with an IL-4 mutein (Aeroderm) protects against flares in atopic eczema [abstract# 320].
        J Invest Dermatol. 2007; 127: S54
        • Vigo P.G.
        • Girgis K.R.
        • Pfuetze B.L.
        • Critchlow M.E.
        • Fisher J.
        • Hussain I.
        Efficacy of anti-IgE therapy in patients with atopic dermatitis.
        J Am Acad Dermatol. 2006; 55: 168
        • Belloni B.
        • Ziai M.
        • Lim A.
        • Lemercier B.
        • Sbornik M.
        • Weidinger S.
        • et al.
        Low-dose anti-IgE therapy in patients with atopic eczema with high serum IgE levels.
        J Allergy Clin Immunol. 2007; 120: 1223-1225
        • Heil P.M.
        • Maurer D.
        • Klein B.
        • Hultsch T.
        • Stingl G.
        Omalizumab therapy in atopic dermatitis: depletion of IgE does not improve the clinical course – a randomized, placebo-controlled and double blind pilot study.
        J Dtsch Dermatol Ges. 2010; 8: 990-998
        • Welle M.
        Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase.
        J Leukoc Biol. 1997; 61: 233-245
        • Tomimori Y.
        • Muto T.
        • Fukami H.
        • Saito K.
        • Horikawa C.
        • Tsuruoka N.
        • et al.
        Chymase participates in chronic dermatitis by inducing eosinophil infiltration.
        Lab Invest. 2002; 82: 789-794
        • Tomimori Y.
        • Muto T.
        • Fukami H.
        • Saito K.
        • Horikawa C.
        • Tsuruoka N.
        • et al.
        Mast cell chymase regulates dermal mast cell number in mice.
        Biochem Biophys Res Commun. 2002; 290: 1478-1482
        • Mao X.Q.
        • Shirakawa T.
        • Yoshikawa T.
        • Yoshikawa K.
        • Kawai M.
        • Sasaki S.
        • et al.
        Association between genetic variants of mast-cell chymase and eczema.
        Lancet. 1996; 348: 581-583
        • Tanaka K.
        • Sugiura H.
        • Uehara M.
        • Sato H.
        • Hashimoto-Tamaoki T.
        • Furuyama J.
        Association between mast cell chymase genotype and atopic eczema: comparison between patients with atopic eczema alone and those with atopic eczema and atopic respiratory disease.
        Clin Exp Allergy. 1999; 29: 800-803
        • Weidinger S.
        • Rummler L.
        • Klopp N.
        • Wagenpfeil S.
        • Baurecht H.J.
        • Fischer G.
        • et al.
        Association study of mast cell chymase polymorphisms with atopy.
        Allergy. 2005; 60: 1256-1261
        • Tomimori Y.
        • Tsuruoka N.
        • Fukami H.
        • Saito K.
        • Horikawa C.
        • Saito M.
        • et al.
        Role of mast cell chymase in allergen-induced biphasic skin reaction.
        Biochem Pharmacol. 2002; 64: 1187
        • Watanabe N.
        • Tomimori Y.
        • Saito K.
        • Miura K.
        • Wada A.
        • Tsudzuki M.
        • et al.
        Chymase inhibitor improves dermatitis in NC/Nga mice.
        Int Arch Allergy Immunol. 2002; 128: 229-234
        • Watanabe N.
        • Tomimori Y.
        • Terakawa M.
        • Ishiwata K.
        • Wada A.
        • Muto T.
        • et al.
        Oral administration of chymase inhibitor improves dermatitis in NC/Nga mice.
        J Invest Dermatol. 2007; 127: 971-973
        • Terakawa M.
        • Fujieda Y.
        • Tomimori Y.
        • Muto T.
        • Tanaka T.
        • Maruoka H.
        • et al.
        Oral chymase inhibitor SUN13834 ameliorates skin inflammation as well as pruritus in mouse model for atopic dermatitis.
        Eur J Pharmacol. 2008; 601: 186-191
        • Tani K.
        • Ogushi F.
        • Kido H.
        • Kawano T.
        • Kunori Y.
        • Kamimura T.
        • et al.
        Chymase is a potent chemoattractant for human monocytes and neutrophils.
        J Leukoc Biol. 2000; 67: 585-589
        • Longley B.J.
        • Tyrrell L.
        • Ma Y.
        • Williams D.A.
        • Halaban R.
        • Langley K.
        • et al.
        Chymase cleavage of stem cell factor yields a bioactive, soluble product.
        Proc Natl Acad Sci U S A. 1997; 94: 9017
        • Bergasa N.V.
        • Alling D.W.
        • Talbot T.L.
        • Swain M.G.
        • Yurdaydin C.
        • Turner M.L.
        • et al.
        Effects of naloxone infusions in patients with the pruritus of cholestasis: a double-blind, randomized, controlled trial.
        Ann Intern Med. 1995; 123: 161-167
        • Metze D.
        • Reimann S.
        • Beissert S.
        • Luger T.
        Efficacy and safety of naltrexone, an oral opiate receptor antagonist, in the treatment of pruritus in internal and dermatological diseases.
        J Am Acad Dermatol. 1999; 41: 533-539
        • Terg R.
        • Coronel E.
        • Sordá J.
        • Muñoz A.E.
        • Findor J.
        Efficacy and safety of oral naltrexone treatment for pruritus of cholestasis, a crossover, double blind, placebo-controlled study.
        J Hepatol. 2002; 37: 717-722
        • Pauli-Magnus C.
        • Mikus G.
        • Alscher D.M.
        • Kirschner T.
        • Nagel W.
        • Gugeler N.
        • et al.
        Naltrexone does not relieve uremic pruritus: results of a randomized, double-blind, placebo-controlled crossover study.
        J Am Soc Nephrol. 2000; 11: 514-519
        • Peer G.
        • Kivity S.
        • Agami O.
        • Fireman E.
        • Silverberg D.
        • Blum M.
        • et al.
        Randomised crossover trial of naltrexone in uraemic pruritus.
        Lancet. 1996; 348: 1552-1554
        • Kjellberg F.
        • Tramer M.
        Pharmacological control of opioid-induced pruritus: a quantitative systematic review of randomized trials.
        Eur J Anaesthesiol. 2001; 18: 346-357
        • Monroe E.W.
        Efficacy and safety of nalmefene in patients with severe pruritus caused by chronic urticaria and atopic dermatitis.
        J Am Acad Dermatol. 1989; 21: 135
        • Bergasa N.V.
        • Schmitt J.M.
        • Talbot T.L.
        • Alling D.W.
        • Swain M.G.
        • Turner M.L.
        • et al.
        Open-label trial of oral nalmefene therapy for the pruritus of cholestasis.
        Hepatology. 1998; 27: 679-684
        • Herzog J.L.
        • Solomon J.A.
        • Draelos Z.
        • Fleischer Jr., A.
        • Stough D.
        • Wolf D.I.
        • et al.
        A randomized, double-blind, vehicle-controlled crossover study to determine the anti-pruritic efficacy, safety and local dermal tolerability of a topical formulation (SRD174 cream) of the long-acting opiod antagonist nalmefene in subjects with atopic dermatitis.
        J Drugs Dermatol. 2011; 10: 853
        • Arai I.
        • Takano N.
        • Hashimoto Y.
        • Futaki N.
        • Sugimoto M.
        • Takahashi N.
        • et al.
        Prostanoid DP1 receptor agonist inhibits the pruritic activity in NC/Nga mice with atopic dermatitis.
        Eur J Pharmacol. 2004; 505: 229-235
        • Honma Y.
        • Arai I.
        • Hashimoto Y.
        • Futaki N.
        • Sugimoto M.
        • Tanaka M.
        • et al.
        Prostaglandin D2 and prostaglandin E2 accelerate the recovery of cutaneous barrier disruption induced by mechanical scratching in mice.
        Eur J Pharmacol. 2005; 518: 56-62
        • Arai I.
        • Takaoka A.
        • Hashimoto Y.
        • Honma Y.
        • Koizumi C.
        • Futaki N.
        • et al.
        Effects of TS-022, a newly developed prostanoid DP1 receptor agonist, on experimental pruritus, cutaneous barrier disruptions and atopic dermatitis in mice.
        Eur J Pharmacol. 2007; 556: 207-214
        • Sugimoto M.
        • Arai I.
        • Futaki N.
        • Hashimoto Y.
        • Sakurai T.
        • Honma Y.
        • et al.
        The anti-pruritic efficacy of TS-022, a prostanoid DP1 receptor agonist, is dependent on the endogenous prostaglandin D2 level in the skin of NC/Nga mice.
        Eur J Pharmacol. 2007; 564: 196-203
        • Galiègue S.
        • Mary S.
        • Marchand J.
        • Dussossoy D.
        • Carrière D.
        • Carayon P.
        • et al.
        Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations.
        Eur J Biochem. 1995; 232: 54-61
        • Facci L.
        • Dal Toso R.
        • Romanello S.
        • Buriani A.
        • Skaper S.
        • Leon A.
        Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide.
        Proc Natl Acad Sci U S A. 1995; 92: 3376
        • Johanek L.M.
        • Simone D.A.
        Activation of peripheral cannabinoid receptors attenuates cutaneous hyperalgesia produced by a heat injury.
        Pain. 2004; 109: 432-442
        • Diaz-Laviada I.
        • Ruiz-Llorente L.
        Signal transduction activated by cannabinoid receptors.
        Mini Rev Med Chem. 2005; 5: 619-630
        • Dvorak M.
        • Watkinson A.
        • McGlone F.
        • Rukwied R.
        Histamine induced responses are attenuated by a cannabinoid receptor agonist in human skin.
        Inflamm Res. 2003; 52: 238-245
        • Rukwied R.
        • Watkinson A.
        • McGlone F.
        • Dvorak M.
        Cannabinoid agonists attenuate capsaicin-induced responses in human skin.
        Pain. 2003; 102: 283-288
        • Gerspacher M.
        • La Vecchia L.
        • Mah R.
        • von Sprecher A.
        • Anderson G.P.
        • Subramanian N.
        • et al.
        Dual neurokinin NK1/NK2 antagonists: N-[(R,R)-(E)-1-arylmethyl-3-(2-oxo-azepan-3-yl) carbamoyl] allyl-N-methyl-3,5-bis (trifluoromethyl) benzamides and 3-[N′-3,5-bis (trifluoromethyl) benzoyl-N-arylmethyl-N′-methylhydrazino]-N-[(R)-2-oxo-azepan-3-yl] propionamides.
        Bioorg Med Chem Lett. 2001; 11: 3081-3084
        • Joos G.
        • Vincken W.
        • Louis R.
        • Schelfhout V.
        • Wang J.
        • Shaw M.
        • et al.
        Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin A-induced bronchoconstriction in asthma patients.
        Eur Res J. 2004; 23: 76-81
        • Schmitt J.
        • Meurer M.
        • Schwanebeck U.
        • Grählert X.
        • Schäkel K.
        Treatment following an evidence-based algorithm versus individualised symptom-oriented treatment for atopic eczema.
        Dermatology. 2008; 217: 299-308
        • Jariwala S.
        • Abrams E.
        • Benson A.
        • Fodeman J.
        • Zheng T.
        The role of thymic stromal lymphopoietin in the immunopathogenesis of atopic dermatitis.
        Clin Exp Allergy. 2011;

      Biography

      Dr. Knut Schäkel studied medicine at the Medical School in Hannover and Buffalo, USA, and received his MD degree in 1993. Following his clinical training in dermatology at the University of Göttingen, Dr. Schäkel studied Immunology at Institute of Immunology at the University of Dresden. Under the supervision of Professor Peter Rieber he identified and characterized the proinflammatory population of slan(6 sulfo LacNAc) dendritic cells in human blood and skin. In the year 2000 Dr. Schäkel joined the department of Dermatology in Dresden and in 2009 he accepted the professorship for Immunodermatology in Heidelberg. His research focuses on the immune function of cutaneous dendritic cells in psoriasis, atopic dermatitis, lupus and melanoma.