Advertisement

Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model

  • Author Footnotes
    1 These authors have equally contributed to this research and are listed in random order.
    Almudena Pérez-Sánchez
    Footnotes
    1 These authors have equally contributed to this research and are listed in random order.
    Affiliations
    Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain
    Search for articles by this author
  • Author Footnotes
    1 These authors have equally contributed to this research and are listed in random order.
    Enrique Barrajón-Catalán
    Footnotes
    1 These authors have equally contributed to this research and are listed in random order.
    Affiliations
    Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain

    INVITROTECNIA S.L., Santiago Grisolía 2, 28760 Tres Cantos, Madrid, Spain
    Search for articles by this author
  • María Herranz-López
    Affiliations
    Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain
    Search for articles by this author
  • Author Footnotes
    2 Frutarom Group.
    Julián Castillo
    Footnotes
    2 Frutarom Group.
    Affiliations
    Nutrafur S.A., Camino Viejo de Pliego, km.2, 30820 Alcantarilla, Murcia, Spain

    Department of Food Technology and Nutrition, Universidad Católica San Antonio, Murcia, Spain
    Search for articles by this author
  • Vicente Micol
    Correspondence
    Corresponding author at: Instituto de Biología Molecular y Celular, Universidad Miguel Hernández. Avda. de la Universidad S/No. 03202 Elche, Alicante, Spain.
    Affiliations
    Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain

    CIBER (CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III), Spain
    Search for articles by this author
  • Author Footnotes
    1 These authors have equally contributed to this research and are listed in random order.
    2 Frutarom Group.

      Highlights

      • Lemon balm extract contains rosmarinic and salvianolic acids as the main polyphenols.
      • LBE protects skin cells against UVB-induced cytotoxicity and ROS generation.
      • LBE decreases UVB-induced DNA damage and the DNA damage response in keratinocytes.
      • Lemon balm extract promotes melanogenesis in melanoma cells.
      • LBE has the potential to protect human skin against UV-induced damage.

      Abstract

      Background

      Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280–315 nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight.

      Objective

      This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes.

      Methods

      The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined.

      Results

      RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model.

      Conclusions

      These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage.

      Abbreviations:

      6-4PPs (pyrimidine (6-4) pyrimidone), CPDs (cyclobutane pyrimidine dimers), DDR (DNA damage response), DMSO (dimethyl sulfoxide), DSBs (double-strand brakes), H2DCF-DA (2′,7′-dichlorofluorescein diacetate), HNE (4-hydroxy-2-nonenal), IBMX (3-isobutyl-1-methylxanthine), LBE (lemon balm extract), MDA (malondialdehyde), ORAC (oxygen radical absorbance capacity), PBS (phosphate-buffered saline), RA (rosmarinic acid), ROS (reactive oxygen species), SSBs (single-strand brakes), TEAC (trolox equivalent antioxidant capacity), UV (ultraviolet)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krutmann J.
        • Humbert P.
        Skin aging.
        in: Humbert J.K.A.P. Nutrition for Healthy Skin: Strategies for Clinical and Cosmetic Practice. Springer, Berlin Heidelberg2011
        • Afaq F.
        • Mukhtar H.
        Botanical antioxidants in the prevention of photocarcinogenesis and photoaging.
        Exp. Dermatol. 2006; 15: 678-684
        • Svobodova A.
        • Psotova J.
        • Walterova D.
        Natural phenolics in the prevention of UV-induced skin damage. A review.
        Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2003; 147: 137-145
        • Cadet J.
        • Douki T.
        • Ravanat J.L.
        Oxidatively generated damage to cellular DNA by UVB and UVA radiation.
        Photochem. Photobiol. 2015; 91: 140-155
        • Ikehata H.
        • Ono T.
        The mechanisms of UV mutagenesis.
        J. Radiat. Res. 2011; 52: 115-125
        • Heck D.E.
        • Vetrano A.M.
        • Mariano T.M.
        • Laskin J.D.
        UVB light stimulates production of reactive oxygen species: unexpected role for catalase.
        J. Biol. Chem. 2003; 278: 22432-22436
        • Beak S.M.
        • Lee Y.S.
        • Kim J.A.
        NADPH oxidase and cyclooxygenase mediate the ultraviolet B-induced generation of reactive oxygen species and activation of nuclear factor-kappaB in HaCaT human keratinocytes.
        Biochimie. 2004; 86: 425-429
        • Bashir M.M.
        • Sharma M.R.
        • Werth V.P.
        TNF-alpha production in the skin.
        Arch. Dermatol. Res. 2009; 301: 87-91
        • Ren X.
        • Shi Y.
        • Zhao D.
        • Xu M.
        • Li X.
        • Dang Y.
        • et al.
        Naringin protects ultraviolet B-induced skin damage by regulating p38 MAPK signal pathway.
        J. Dermatol. Sci. 2015;
        • Hwang Y.P.
        • Oh K.N.
        • Yun H.J.
        • Jeong H.G.
        The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells.
        J. Dermatol. Sci. 2011; 61: 23-31
        • Barrajon-Catalan E.
        • Herranz-Lopez M.
        • Joven J.
        • Segura-Carretero A.
        • Alonso-Villaverde C.
        • Menendez J.A.
        • et al.
        Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties.
        Adv. Exp. Med. Biol. 2014; 824: 141-159
        • Godic A.
        • Poljsak B.
        • Adamic M.
        • Dahmane R.
        The role of antioxidants in skin cancer prevention and treatment.
        Oxid. Med. Cell Longev. 2014; 860479: 2014
        • Zaid M.A.
        • Afaq F.
        • Syed D.N.
        • Dreher M.
        • Mukhtar H.
        Inhibition of UVB-mediated oxidative stress and markers of photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx.
        Photochem. Photobiol. 2007; 83: 882-888
        • Perez-Sanchez A.
        • Barrajon-Catalan E.
        • Caturla N.
        • Castillo J.
        • Benavente-Garcia O.
        • Alcaraz M.
        • et al.
        Protective effects of citrus and rosemary extracts on UV-induced damage in skin cell model and human volunteers.
        J. Photochem. Photobiol. B. 2014; 136: 12-18
        • Wu L.Y.
        • Zheng X.Q.
        • Lu J.L.
        • Liang Y.R.
        Protective effect of green tea polyphenols against ultraviolet B-induced damage to HaCaT cells.
        Hum. Cell. 2009; 22: 18-24
        • Park K.
        • Lee J.H.
        Protective effects of resveratrol on UVB-irradiated HaCaT cells through attenuation of the caspase pathway.
        Oncol. Rep. 2008; 19: 413-417
        • Wei H.
        • Zhang X.
        • Wang Y.
        • Lebwohl M.
        Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein.
        Cancer Lett. 2002; 185: 21-29
        • Wang Y.
        • Zhang X.
        • Lebwohl M.
        • DeLeo V.
        • Wei H.
        Inhibition of ultraviolet B (UVB)-induced c-fos and c-jun expression in vivo by a tyrosine kinase inhibitor genistein.
        Carcinogenesis. 1998; 19: 649-654
        • Guo W.
        • An Y.
        • Jiang L.
        • Geng C.
        • Zhong L.
        The protective effects of hydroxytyrosol against UVB-induced DNA damage in HaCaT cells.
        Phytother. Res. 2010; 24: 352-359
        • Weeks B.S.
        Formulations of dietary supplements and herbal extracts for relaxation and anxiolytic action: relarian.
        Med. Sci. Monit. 2009; 15: RA256-RA262
        • Schnitzler P.
        • Schuhmacher A.
        • Astani A.
        • Reichling J.
        Melissa officinalis oil affects infectivity of enveloped herpesviruses.
        Phytomedicine. 2008; 15: 734-740
        • Madisch A.
        • Holtmann G.
        • Mayr G.
        • Vinson B.
        • Hotz J.
        Treatment of functional dyspepsia with a herbal preparation. A double-blind, randomized, placebo-controlled, multicenter trial.
        Digestion. 2004; 69: 45-52
        • Fadel O.
        • El Kirat K.
        • Morandat S.
        The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ.
        BBA Biomembr. 2011; 1808: 2973-2980
        • Hancianu M.
        • Aprotosoaie A.C.
        • Gille E.
        • Poiata A.
        • Tuchilus C.
        • Spac A.
        • et al.
        Chemical composition and in vitro antimicrobial activity of essential oil of Melissa officinalis L. from Romania.
        Rev. Med. Chir. Soc. Med. Nat. Iasi. 2008; 112: 843-847
        • Amoah S.K.
        • Sandjo L.P.
        • Kratz J.M.
        • Biavatti M.W.
        Rosmarinic acid – pharmaceutical and clinical aspects.
        Planta Med. 2016; https://doi.org/10.1055/s-0035-1568274
        • Kamdem J.P.
        • Adeniran A.
        • Boligon A.A.
        • Klimaczewski C.V.
        • Elekofehinti O.O.
        • Hassan W.
        • et al.
        Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: its potential role in neuroprotection.
        Ind. Crop Prod. 2013; 51: 26-34
        • Skotti E.
        • Anastasaki E.
        • Kanellou G.
        • Polissiou M.
        • Tarantilis P.A.
        Total phenolic content: antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants.
        Ind. Crop Prod. 2014; 53: 46-54
        • Zeraatpishe A.
        • Oryan S.
        • Bagheri M.H.
        • Pilevarian A.A.
        • Malekirad A.A.
        • Baeeri M.
        • et al.
        Effects of Melissa officinalis L. on oxidative status and DNA damage in subjects exposed to long-term low-dose ionizing radiation.
        Toxicol. Ind. Health. 2011; 27: 205-212
        • Vostálová J.
        • Zdarilová A.
        • Svobodová A.
        Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes.
        Arch. Dermatol. Res. 2010; 302: 171-181
        • Laporta O.
        • Pérez-Fons L.
        • Mallavia R.
        • Caturla N.
        • Micol V.
        Isolation, characterization and antioxidant capacity assessment of the bioactive compounds derived from Hypoxis rooperi corm extract (African potato).
        Food Chem. 2007; 101: 1425-1437
        • Barrajon-Catalan E.
        • Fernandez-Arroyo S.
        • Saura D.
        • Guillen E.
        • Fernandez-Gutierrez A.
        • Segura-Carretero A.
        • et al.
        Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells.
        Food Chem. Toxicol. 2010; 48: 2273-2282
        • Perez-Fons L.
        • Garzon M.T.
        • Micol V.
        Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order.
        J. Agric. Food Chem. 2016; 58: 161-171
        • Heitz A.
        • Carnat A.
        • Fraisse D.
        • Carnat A.P.
        • Lamaison J.L.
        Luteolin 3′-glucuronide, the major flavonoid from Melissa officinalis subsp. officinalis.
        Fitoterapia. 2000; 71: 201-202
        • Tice R.R.
        • Strauss G.H.
        The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans.
        Stem Cells. 1995; 13: 207-214
        • Lee J.
        • Kim Y.S.
        • Park D.
        Rosmarinic acid induces melanogenesis through protein kinase A activation signaling.
        Biochem. Pharmacol. 2007; 74: 960-968
        • LeBel C.P.
        • Ischiropoulos H.
        • Bondy S.C.
        Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress.
        Chem. Res. Toxicol. 1992; 5: 227-231
        • Peus D.
        • Vasa R.A.
        • Beyerle A.
        • Meves A.
        • Krautmacher C.
        • Pittelkow M.R.
        UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes.
        J. Invest. Dermatol. 1999; 112: 751-756
        • Winczura A.
        • Czubaty A.
        • Winczura K.
        • Maslowska K.
        • Nalecz M.
        • Dudzinska D.A.
        • et al.
        Lipid peroxidation product 4-hydroxy-2-nonenal modulates base excision repair in human cells.
        DNA Repair (Amst.). 2014; 22: 1-11
        • Alcaraz M.
        • Acevedo C.
        • Castillo J.
        • Benavente-Garcia O.
        • Armero D.
        • Vicente V.
        • et al.
        Liposoluble antioxidants provide an effective radioprotective barrier.
        Br. J. Radiol. 2009; 82: 605-609
        • Huang D.
        • Boxin O.U.
        • Prior R.L.
        The chemistry behind antioxidant capacity assays.
        J. Agric. Food Chem. 2005; 53: 1841-1856
        • Funes L.
        • Fernández-Arroyo S.
        • Laporta O.
        • Pons A.
        • Roche E.
        • Segura-Carretero A.
        • et al.
        Correlation between plasma antioxidant capacity and verbascoside levels in rats after oral administration of lemon verbena extract.
        Food Chem. 2009; 117: 589-598
        • Jackson S.P.
        • Bartek J.
        The DNA-damage response in human biology and disease.
        Nature. 2009; 461: 1071-1078
        • Oh K.S.
        • Bustin M.
        • Mazur S.J.
        • Appella E.
        • Kraemer K.H.
        UV-induced histone H2AX phosphorylation and DNA damage related proteins accumulate and persist in nucleotide excision repair-deficient XP-B cells.
        DNA Repair (Amst.). 2011; 10: 5-15
        • Fernandez-Capetillo O.
        • Lee A.
        • Nussenzweig M.
        • Nussenzweig A.
        H2AX: the histone guardian of the genome.
        DNA Repair. 2004; 3: 959-967
        • Miron T.L.
        • Herrero M.
        • Ibáñez E.
        Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction.
        J. Chromatogr. A. 2013; 1288: 1-9
        • Pereira R.P.
        • Boligon A.A.
        • Appel A.S.
        • Fachinetto R.
        • Ceron C.S.
        • Tanus-Santos J.E.
        • et al.
        Chemical composition: antioxidant and anticholinesterase activity of Melissa officinalis.
        Ind. Crop Prod. 2014; 53: 34-45
        • Sanchez-Campillo M.
        • Gabaldon J.A.
        • Castillo J.
        • Benavente-Garcia O.
        • Del Bano M.J.
        • Alcaraz M.
        • et al.
        Rosmarinic acid: a photo-protective agent against UV and other ionizing radiations.
        Food Chem. Toxicol. 2009; 47: 386-392
        • Lim S.H.
        • Jung S.K.
        • Byun S.
        • Lee E.J.
        • Hwang J.A.
        • Seo S.G.
        • et al.
        Luteolin suppresses UVB-induced photoageing by targeting JNK1 and p90 RSK2.
        J. Cell. Mol. Med. 2013; 17: 672-680
        • Takekoshi S.
        • Nagata H.
        • Kitatani K.
        Flavonoids enhance melanogenesis in human melanoma cells.
        Tokai J. Exp. Clin. Med. 2014; 39: 116-121
        • Baba S.
        • Osakabe N.
        • Natsume M.
        • Terao J.
        Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid.
        Life Sci. 2004; 75: 165-178
        • Ritschel W.A.
        • Starzacher A.
        • Sabouni A.
        • Hussain A.S.
        • Koch H.P.
        Percutaneous absorption of rosmarinic acid in the rat.
        Methods Find. Exp. Clin. Pharmacol. 1989; 11: 345-352