Advertisement
Research Article| Volume 90, ISSUE 3, P253-262, June 2018

Download started.

Ok

MITF-M regulates melanogenesis in mouse melanocytes

Published:February 19, 2018DOI:https://doi.org/10.1016/j.jdermsci.2018.02.008

      Highlights

      • There exists different expression in MITF-M in various coat color mice skin.
      • The specific promoter Tyrp2 could promote the expression of MITF-M.
      • The overexpression of MITF-M increases the melanin content via up-regulating the levels of Tyr, Tyrp1 and Tyrp2.
      • MITF-M regulates melanogenesis signaling pathway and the level of melanosomal protein in mouse melanocytes.

      Abstract

      Background

      Although the impact of the microphthalamia-associated transcription factor (Mitf) signaling pathway on melanocytes progression has been extensively studied, the specific molecular mechanisms behind MITF-M-enhanced melanin production in melanocytes still need to be clarified.

      Methods

      In this study, we analyzed the levels of Mitf-M in skin tissues of different coat mice in order to further reveal the relationship between Mitf-M and skin pigmentation. To address the function of Mitf-M on melanogenesis, we have used an overexpression system and combined morphological and biochemical methods to investigate its localization in different coat color mice and pigmentation-related genes’ expression in mouse melanocytes.

      Results

      The qRT-PCR assay and Western blotting analysis revealed that Mitf-M mRNA and protein were synthesized in all tested mice skin samples, with the highest expression level in brown skin, a moderate expression level in grey skin and the lowest expression level in black skin. Simultaneously, immunofluorescence staining revealed that MITF-M was mainly expressed in the hair follicle matrix and inner and outer root sheath in the skin tissues with different coat colors. Furthermore, overexpression of MITF-M led to increased melanin content and variable pigmentation-related gene expression.

      Conclusion

      These results directly demonstrate that MITF-M not only influences melanogenesis, but also determines the progression of melanosomal protein in mouse melanocytes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hertwig P.
        Neue mutationen und koppelungsgruppen bei der hausmaus.
        Mol. Genet. Genom. 1942; 80: 220-246
        • Hodgkinson C.A.
        • Moore K.J.
        • Nakayama A.
        • Steingrimsson E.
        • Copeland N.G.
        • Jenkins N.A.
        • Arnheiter H.
        Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein.
        Cell. 1993; 74: 395-404
        • Tachibana M.
        MITF: a stream flowing for pigment cells.
        Pigment Cell Res. 2000; 13: 230-240
        • Hemesath T.J.
        • Steingrimsson E.
        • McGill G.
        • Hansen M.J.
        • Vaught J.
        • Hodgkinson C.A.
        • Arnheiter H.
        • Copeland N.G.
        • Jenkins N.A.
        • Fisher D.E.
        Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family.
        Genes Dev. 1994; 8: 2770-2780
        • Bharti K.
        • Nguyen M.T.
        • Skuntz S.
        • Bertuzzi S.
        • Arnheiter H.
        The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye.
        Pigment Cell Res. 2006; 19: 380-394
        • Tachibana M.
        • Perez-Jurado L.A.
        • Nakayama A.
        • Hodgkinson C.A.
        • Li X.
        • Schneider M.
        • Miki T.
        • Fex J.
        • Francke U.
        • Arnheiter H.
        Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3.
        Hum. Mol. Genet. 1994; 3: 553-557
        • Bharti K.
        • Liu W.
        • Csermely T.
        • Bertuzzi S.
        • Arnheiter H.
        Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF.
        Development. 2008; 135: 1169-1178
        • Li X.H.
        • Kishore A.H.
        • Dao D.
        • Zheng W.
        • Roman C.A.
        • Word R.A.
        A novel isoform of microphthalmia-associated transcription factor inhibits IL-8 gene expression in human cervical stromal cells.
        Mol. Endocrinol. 2010; 24: 1512-1528
        • Levy C.
        • Khaled M.
        • Fisher D.E.
        MITF: master regulator of melanocyte development and melanoma oncogene.
        Trends Mol. Med. 2006; 12: 406-414
        • Fuse N.
        • Yasumoto K.
        • Takeda K.
        • Amae S.
        • Yoshizawa M.
        • Udono T.
        • Takahashi K.
        • Tamai M.
        • Tomita Y.
        • Tachibana M.
        • Shibahara S.
        Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus.
        J. Biochem. 1999; 126: 1043-1051
        • Vachtenheim J.
        • Novotna H.
        Expression of genes for microphthalmia isoforms, Pax3 and MSG1, in human melanomas.
        Cell. Mol. Biol. (Noisy-le-grand). 1999; 45: 1075-1082
        • Maruotti J.
        • Thein T.
        • Zack D.J.
        • Esumi N.
        MITF-M, a ‘melanocyte-specific’ isoform, is expressed in the adult retinal pigment epithelium.
        Pigment Cell Melanoma Res. 2012; 25: 641-644
        • Amae S.
        • Fuse N.
        • Yasumoto K.
        • Sato S.
        • Yajima I.
        • Yamamoto H.
        • Udono T.
        • Durlu Y.K.
        • Tamai M.
        • Takahashi K.
        • Shibahara S.
        Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium.
        Biochem. Biophys. Res. Commun. 1998; 247: 710-715
        • Udono T.
        • Yasumoto K.
        • Takeda K.
        • Amae S.
        • Watanabe K.
        • Saito H.
        • Fuse N.
        • Tachibana M.
        • Takahashi K.
        • Tamai M.
        • Shibahara S.
        Structural organization of the human microphthalmia-associated transcription factor gene containing four alternative promoters.
        Biochim. Biophys. Acta. 2000; 1491: 205-219
        • Vachtenheim J.
        • Borovansky J.
        Transcription physiology of pigment formation in melanocytes: central role of MITF.
        Exp. Dermatol. 2010; 19: 617-627
        • Yajima I.
        • Kumasaka M.Y.
        • Thang N.D.
        • Goto Y.
        • Takeda K.
        • Iida M.
        • Ohgami N.
        • Tamura H.
        • Yamanoshita O.
        • Kawamoto Y.
        • Furukawa K.
        • Kato M.
        Molecular network associated with MITF in skin melanoma development and progression.
        J. Skin Cancer. 2011; 2011: 730170
        • Baumer N.
        • Marquardt T.
        • Stoykova A.
        • Spieler D.
        • Treichel D.
        • Ashery-Padan R.
        • Gruss P.
        Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6.
        Development. 2003; 130: 2903-2915
        • Raviv S.
        • Bharti K.
        • Rencus-Lazar S.
        • Cohen-Tayar Y.
        • Schyr R.
        • Evantal N.
        • Meshorer E.
        • Zilberberg A.
        • Idelson M.
        • Reubinoff B.
        • Grebe R.
        • Rosin-Arbesfeld R.
        • Lauderdale J.
        • Lutty G.
        • Arnheiter H.
        • Ashery-Padan R.
        PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF.
        PLoS Genet. 2014; 10: e1004360
        • Takeda K.
        • Takemoto C.
        • Kobayashi I.
        • Watanabe A.
        • Nobukuni Y.
        • Fisher D.E.
        • Tachibana M.
        Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance.
        Hum. Mol. Genet. 2000; 9: 125-132
        • Mansky K.C.
        • Sankar U.
        • Han J.
        • Ostrowski M.C.
        Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling.
        J. Biol. Chem. 2002; 277: 11077-11083
        • Hemesath T.J.
        • Price E.R.
        • Takemoto C.
        • Badalian T.
        • Fisher D.E.
        MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes.
        Nature. 1998; 391: 298-301
        • Wu M.
        • Hemesath T.J.
        • Takemoto C.M.
        • Horstmann M.A.
        • Wells A.G.
        • Price E.R.
        • Fisher D.Z.
        • Fisher D.E.
        c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi.
        Genes Dev. 2000; 14: 301-312
        • Xu W.
        • Gong L.
        • Haddad M.M.
        • Bischof O.
        • Campisi J.
        • Yeh E.T.
        • Medrano E.E.
        Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9.
        Exp. Cell Res. 2000; 255: 135-143
        • Murakami H.
        • Arnheiter H.
        Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner.
        Pigment Cell Res. 2005; 18: 265-277
        • Bentley N.J.
        • Eisen T.
        • Goding C.R.
        Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator.
        Mol. Cell. Biol. 1994; 14: 7996-8006
        • Yasumoto K.
        • Yokoyama K.
        • Takahashi K.
        • Tomita Y.
        • Shibahara S.
        Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes.
        J. Biol. Chem. 1997; 272: 503-509
        • Basrur V.
        • Yang F.
        • Kushimoto T.
        • Higashimoto Y.
        • Yasumoto K.
        • Valencia J.
        • Muller J.
        • Vieira W.D.
        • Watabe H.
        • Shabanowitz J.
        • Hearing V.J.
        • Hunt D.F.
        • Appella E.
        Proteomic analysis of early melanosomes: identification of novel melanosomal proteins.
        J. Proteome Res. 2003; 2: 69-79
        • Lin J.Y.
        • Fisher D.E.
        Melanocyte biology and skin pigmentation.
        Nature. 2007; 445: 843-850
        • Horikawa T.
        • Norris D.A.
        • Johnson T.W.
        • Zekman T.
        • Dunscomb N.
        • Bennion S.D.
        • Jackson R.L.
        • Morelli J.G.
        DOPA-negative melanocytes in the outer root sheath of human hair follicles express premelanosomal antigens but not a melanosomal antigen or the melanosome-associated glycoproteins tyrosinase, TRP-1, and TRP-2.
        J. Invest. Dermatol. 1996; 106: 28-35
        • Tobin D.J.
        • Bystryn J.C.
        Different populations of melanocytes are present in hair follicles and epidermis.
        Pigment Cell Res. 1996; 9: 304-310
        • Slominski A.
        • Wortsman J.
        • Plonka P.M.
        • Schallreuter K.U.
        • Paus R.
        • Tobin D.J.
        Hair follicle pigmentation.
        J. Invest. Dermatol. 2005; 124: 13-21
        • Sarin K.Y.
        • Artandi S.E.
        Aging, graying and loss of melanocyte stem cells.
        Stem Cell Rev. 2007; 3: 212-217
        • Vetrini F.
        • Auricchio A.
        • Du J.
        • Angeletti B.
        • Fisher D.E.
        • Ballabio A.
        • Marigo V.
        The microphthalmia transcription factor (Mitf) controls expression of the ocular albinism type 1 gene: link between melanin synthesis and melanosome biogenesis.
        Mol. Cell. Biol. 2004; 24: 6550-6559
        • Cortese K.
        • Giordano F.
        • Surace E.M.
        • Venturi C.
        • Ballabio A.
        • Tacchetti C.
        • Marigo V.
        The ocular albinism type 1 (OA1) gene controls melanosome maturation and size.
        Invest. Ophthalmol. Vis. Sci. 2005; 46: 4358-4364
        • Palmisano I.
        • Bagnato P.
        • Palmigiano A.
        • Innamorati G.
        • Rotondo G.
        • Altimare D.
        • Venturi C.
        • Sviderskaya E.V.
        • Piccirillo R.
        • Coppola M.
        • Marigo V.
        • Incerti B.
        • Ballabio A.
        • Surace E.M.
        • Tacchetti C.
        • Bennett D.C.
        • Schiaffino M.V.
        The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells.
        Hum. Mol. Genet. 2008; 17: 3487-3501
        • Schiaffino M.V.
        Signaling pathways in melanosome biogenesis and pathology.
        Int. J. Biochem. Cell Biol. 2010; 42: 1094-1104
        • Falletta P.
        • Bagnato P.
        • Bono M.
        • Monticone M.
        • Schiaffino M.V.
        • Bennett D.C.
        • Goding C.R.
        • Tacchetti C.
        • Valetti C.
        Melanosome-autonomous regulation of size and number: the OA1 receptor sustains PMEL expression.
        Pigment Cell Melanoma Res. 2014; 27: 565-579
        • Chen T.
        • Wang H.
        • Liu Y.
        • Zhao B.
        • Zhao Y.
        • Fan R.
        • Wang P.
        • Dong C.
        Ocular albinism type 1 regulates melanogenesis in mouse melanocytes.
        Int. J. Mol. Sci. 2016; 17
        • Du J.
        • Fisher D.E.
        Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF.
        J. Biol. Chem. 2002; 277: 402-406
        • Graf J.
        • Voisey J.
        • Hughes I.
        • van Daal A.
        Promoter polymorphisms in the MATP (SLC45A2) gene are associated with normal human skin color variation.
        Hum. Mutat. 2007; 28: 710-717
        • Smith D.R.
        • Spaulding D.T.
        • Glenn H.M.
        • Fuller B.B.
        The relationship between Na(+)/H(+) exchanger expression and tyrosinase activity in human melanocytes.
        Exp. Cell Res. 2004; 298: 521-534
        • Dooley C.M.
        • Schwarz H.
        • Mueller K.P.
        • Mongera A.
        • Konantz M.
        • Neuhauss S.C.
        • Nusslein-Volhard C.
        • Geisler R.
        Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease.
        Pigment Cell Melanoma Res. 2013; 26: 205-217
        • Bin B.H.
        • Bhin J.
        • Yang S.H.
        • Shin M.
        • Nam Y.J.
        • Choi D.H.
        • Shin D.W.
        • Lee A.Y.
        • Hwang D.
        • Cho E.G.
        • Lee T.R.
        Membrane-associated transporter protein (MATP) regulates melanosomal pH and influences tyrosinase activity.
        PLoS One. 2015; 10: e0129273
        • Kondo T.
        • Namiki T.
        • Coelho S.G.
        • Valencia J.C.
        • Hearing V.J.
        Oculocutaneous albinism: developing novel antibodies targeting the proteins associated with OCA2 and OCA4.
        J. Dermatol. Sci. 2015; 77: 21-27
        • Bennett D.C.
        • Lamoreux M.L.
        The color loci of mice?a genetic century.
        Pigment Cell Res. 2003; 16: 333-344
        • Anderson M.G.
        • Libby R.T.
        • Mao M.
        • Cosma I.M.
        • Wilson L.A.
        • Smith R.S.
        • John S.W.
        Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma.
        BMC Biol. 2006; 4: 20
        • Anderson M.G.
        • Smith R.S.
        • Hawes N.L.
        • Zabaleta A.
        • Chang B.
        • Wiggs J.L.
        • John S.W.
        Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice.
        Nat. Genet. 2002; 30: 81-85
        • Loftus S.K.
        • Antonellis A.
        • Matera I.
        • Renaud G.
        • Baxter L.L.
        • Reid D.
        • Wolfsberg T.G.
        • Chen Y.
        • Wang C.
        • Prasad M.K.
        • Bessling S.L.
        • McCallion A.S.
        • Green E.D.
        • Bennett D.C.
        • Pavan W.J.
        Gpnmb is a melanoblast-expressed, MITF-dependent gene.
        Pigment Cell Melanoma Res. 2009; 22: 99-110
        • Zhang P.
        • Liu W.
        • Zhu C.
        • Yuan X.
        • Li D.
        • Gu W.
        • Ma H.
        • Xie X.
        • Gao T.
        Silencing of GPNMB by siRNA inhibits the formation of melanosomes in melanocytes in a MITF-independent fashion.
        PLoS One. 2012; 7: e42955
        • Zhao B.
        • Li Y.
        • Chen T.
        • Liu Y.
        • Chang L.
        • Fan R.
        • Xue L.
        • Wang H.
        • Dong C.
        GPNMB affects melanin synthesis in the melanocytes via MITF to regulate the downstream pigmental genes.
        Sci. Agric. Sin. 2017; 50: 1334-1342
        • Aoki H.
        • Moro O.
        Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R).
        Life Sci. 2002; 71: 2171-2179
        • Mountjoy K.G.
        • Robbins L.S.
        • Mortrud M.T.
        • Cone R.D.
        The cloning of a family of genes that encode the melanocortin receptors.
        Science. 1992; 257: 1248-1251
        • Cheli Y.
        • Ohanna M.
        • Ballotti R.
        • Bertolotto C.
        Fifteen-year quest for microphthalmia-associated transcription factor target genes.
        Pigment Cell Melanoma Res. 2010; 23: 27-40
        • Garrido M.C.
        • Bastian B.C.
        KIT as a therapeutic target in melanoma.
        J. Invest. Dermatol. 2010; 130: 20-27
        • Kitamura R.
        • Tsukamoto K.
        • Harada K.
        • Shimizu A.
        • Shimada S.
        • Kobayashi T.
        • Imokawa G.
        Mechanisms underlying the dysfunction of melanocytes in vitiligo epidermis: role of SCF/KIT protein interactions and the downstream effector, MITF-M.
        J. Pathol. 2004; 202: 463-475
        • Phung B.
        • Sun J.
        • Schepsky A.
        • Steingrimsson E.
        • Ronnstrand L.
        C-KIT signaling depends on microphthalmia-associated transcription factor for effects on cell proliferation.
        PLoS One. 2011; 6: e24064
        • Mizutani Y.
        • Hayashi N.
        • Kawashima M.
        • Imokawa G.
        A single UVB exposure increases the expression of functional KIT in human melanocytes by up-regulating MITF expression through the phosphorylation of p38/CREB.
        Arch. Dermatol. Res. 2010; 302: 283-294