Advertisement

The mechanism of skin lipids influencing skin status

Published:November 20, 2017DOI:https://doi.org/10.1016/j.jdermsci.2017.11.006

      Abstract

      Skin lipids, compose of sebocyte-, keratinocyte-, and microbe- derived lipids, dramatically influence skin status by different mechanisms. (I) Physical chemistry function: They are “mortar” to establish the physico-chemical barrier function of skin; (II) Biochemistry function: They function as signals in the complex signaling network originating at the epidermal level; (III) Microecology function: Sebocyte- and keratinocyte-derived lipids vary the composition of microbial skin flora, and microorganisms metabolize them to produce lipids as signal starting signaling transduction. Importantly, further research needs lipidiomics, more powerful analytical ability and high-throughput manner, to identify skin lipid components into individual species. The validation of lipid structure and function to research the process that lipid species involved in. Additional, the integration of lipidomics data with other omics strategies can develop the power to study the mechanism of skin lipids influencing skin status.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Han X.
        Lipidomics for studying metabolism.
        Nat. Rev. Endocrinol. 2016; 12: 668-679
        • Yang K.
        • Han X.
        Lipidomics: techniques applications, and outcomes related to biomedical sciences.
        Trends Biochem. Sci. 2016; 41: 954-969
        • Hu Q.
        • Wang M.
        • Cho M.S.
        • Wang C.
        • Nick A.M.
        • Thiagarajan P.
        • Aung F.M.
        • Han X.
        • Sood A.K.
        • Afshar-Kharghan V.
        Lipid profile of platelets and platelet-derived microparticles in ovarian cancer.
        BBA Clin. 2016; 6: 76-81
        • Ahn B.
        • Soundarapandian M.M.
        • Sessions H.
        • Peddibhotla S.
        • Roth G.P.
        • Li J.L.
        • Sugarman E.
        • Koo A.
        • Malany S.
        • Wang M.
        • Yea K.
        • Brooks J.
        • Leone T.C.
        • Han X.
        • Vega R.B.
        • Kelly D.P.
        MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling.
        J. Clin. Invest. 2016; 126: 3567-3579
        • Wang M.
        • Han X.
        Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury.
        Methods Mol. Biol. 2016; 1303: 405-422
        • Bechmann L.P.
        • Hannivoort R.A.
        • Gerken G.
        • Hotamisligil G.S.
        • Trauner M.
        • Canbay A.
        The interaction of hepatic lipid and glucose metabolism in liver diseases.
        J. Hepatol. 2012; 56: 952-964
        • Graessler J.
        • Schwudke D.
        • Schwarz P.E.
        • Herzog R.
        • Shevchenko A.
        • Bornstein S.R.
        Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients.
        PLoS One. 2009; 4: e6261
        • Meikle P.J.
        • Christopher M.J.
        Lipidomics is providing new insight into the metabolic syndrome and its sequelae.
        Curr. Opin. Lipidol. 2011; 22: 210-215
        • Pietiläinen K.H.
        • Róg T.
        • Seppänen-Laakso T.
        • Virtue S.
        • Gopalacharyulu P.
        • Tang J.
        • Rodriguez-Cuenca S.
        • Maciejewski A.
        • Naukkarinen J.
        • Ruskeepää A.L.
        • Niemelä P.S.
        • Yetukuri L.
        • Tan C.Y.
        • Velagapudi V.
        • Castillo S.
        • Nygren H.
        • Hyötyläinen T.
        • Rissanen A.
        • Kaprio J.
        • Yki-Järvinen H.
        • Vattulainen I.
        • Vidal-Puig A.
        • Orešič M.
        Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans.
        PLoS Biol. 2011; 9: e1000623
        • Elias P.M.
        • Crumrine D.
        • Paller A.
        • Rodriguez-Martin M.
        • Williams M.L.
        Pathogenesis of the cutaneous phenotype in inherited disorders of cholesterol metabolism: therapeutic implications for topical treatment of these disorders.
        Dermatoendocrinology. 2011; 3: 100-106
        • van Smeden J.
        • Janssens M.
        • Kaye E.C.
        • Caspers P.J.
        • Lavrijsen A.P.
        • Vreeken R.J.
        • Bouwstra J.A.
        The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients.
        Exp. Dermatol. 2014; 23: 45-52
        • Camera E.
        • Ludovici M.
        • Tortorella S.
        • Sinagra J.L.
        • Capitanio B.
        • Goracci L.
        • Picardo M.
        Use of lipidomics to investigate sebum dysfunction in juvenile acne.
        J. Lipid Res. 2016; 7: 1051-1058
        • Li S.
        • Villarreal M.
        • Stewart S.
        • Choi J.
        • Indra G.
        • Babineau D.C.
        • Philpot C.
        • David G.
        • Yoshida T.
        • Boguniewicz M.
        • Hanifin J.
        • Beck L.A.
        • Leung D.
        • Simpson E.
        • Indra A.K.
        Altered composition of epidermal lipids correlates with Staphylococcus aureus colonization status in atopic dermatitis.
        Br. J. Dermatol. 2017; 177: e125-e127https://doi.org/10.1111/bjd.15409
        • Li X.
        • He C.
        • Chen Z.
        • Zhou C.
        • Gan Y.
        • Jia Y.
        A review of the role of sebum in the mechanism of acne pathogenesis.
        J. Cosmet. Dermatol. 2017; 16: 168-173https://doi.org/10.1111/jocd.12345
        • Cui L.
        • Jia Y.
        • Cheng Z.W.
        • Gao Y.
        • Zhang G.L.
        • Li J.Y.
        • He C.F.
        Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes.
        J. Cosmet. Dermatol. 2016; 15: 549-558
        • Grice E.A.
        • Kong H.H.
        • Conlan S.
        • Deming C.B.
        • Davis J.
        • Young A.C.
        • Comparative Sequencing Program N.I.S.C.
        • Bouffard G.G.
        • Blakesley R.W.
        • Murray P.R.
        • Green E.D.
        • Turner M.L.
        • Segre J.A.
        Topographical and temporal diversity of the human skin microbiome.
        Science. 2009; 324: 1190-1192
        • Lai Y.
        • Nardo A.D.
        • Nakatsuji T.
        • Leichtle A.
        • Yang Y.
        • Cogen A.L.
        • Wu Z.R.
        • Hooper L.V.
        • Schmidt R.R.
        • Aulock S.
        • Radek K.A.
        • Huang C.M.
        • Ryan A.F.
        • Gallo R.L.
        Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury.
        Nat. Med. 2009; 15: 1377-1382
        • Naik S.
        • Bouladoux N.
        • Wilhelm C.
        • Molloy M.J.
        • Salcedo R.
        • Kastenmuller W.
        • Deming C.
        • Quinones M.
        • Koo L.
        • Conlan S.
        • Spencer S.
        • Hall J.A.
        • Dzutsev A.
        • Kong H.
        • Campbell D.J.
        • Trinchieri G.
        • Segre J.A.
        • Belkaid Y.
        Compartmentalized control of skin immunity by resident commensals.
        Science. 2012; 337: 1115-1119
        • Achermann Y.
        • Goldstein E.J.
        • Coenye T.
        • Shirtliff M.E.
        Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen.
        Clin. Microbiol. Rev. 2014; 27: 419-440
        • Chandrasekaran S.K.
        • Shaw J.E.
        Factors influencing the percutaneous absorption of drugs.
        Curr. Probl. Dermatol. 1978; 7: 142-155
        • Chandrasekaran S.K.
        • Bayne W.
        • Shaw J.E.
        Pharmacokinetics of drug permeation through human skin.
        J. Pharm. Sci. 1978; 67: 1370-1374
        • Fan L.
        • He C.
        • Jiang L.
        • Bi Y.
        • Dong Y.
        • Jia Y.
        Brief analysis of causes of sensitive skin and advances in evaluation of anti-allergic activity of cosmetic products.
        Int. J. Cosmet. Sci. 2016; 38: 120-127
        • Moore D.J.
        • Rerek M.E.
        • Mendelsohn R.
        Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies.
        Biochem. Biophys. Res. Commun. 1997; 231: 797-801
        • Schreiner V.
        • Gooris G.S.
        • Pfeiffer S.
        • Lanzendörfer G.
        • Wenck H.
        • Diembeck W.
        • Proksch E.
        • Bouwstra J.
        Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging.
        J. Invest. Dermatol. 2000; 114: 654-660
        • Boiten W.
        • Absalah S.
        • Vreeken R.
        • Bouwstra J.A.
        • van Smeden J.
        Quantitative analysis of ceramides using a novel lipidomics approach with three dimensional response modelling.
        Biochim. Biophys. Acta. 2016; 1861: 1652-1661
        • Sochorová M.
        • Staňková K.
        • Pullmannová P.
        • Kováčik A.
        • Zbytovská J.
        • Vávrová K.
        Permeability barrier and microstructure of skin lipid membrane models of impaired glucosylceramide processing.
        Sci. Rep. 2017; 7: 6470
        • Ishikawa J.
        • Narita H.
        • Kondo N.
        • Hotta M.
        • Takagi Y.
        • Masukawa Y.
        • Kitahara T.
        • Takema Y.
        • Koyano S.
        • Yamazaki S.
        • Hatamochi A.
        Changes in the ceramide profile of atopic dermatitis patients.
        J. Invest. Dermatol. 2010; 130: 2511-2514
        • Meckfessel M.H.
        • Brandt S.
        The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products.
        J. Am. Acad. Dermatol. 2014; 71: 177-184
        • Janssens M.
        • van Smeden J.
        • Gooris G.S.
        • Bras W.
        • Portale G.
        • Caspers P.J.
        • Vreeken R.J.
        • Hankemeier T.
        • Kezic S.
        • Wolterbeek R.
        • Lavrijsen A.P.
        • Bouwstra J.A.
        Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients.
        J. Lipid Res. 2012; 53: 2755-2766
        • Motta S.
        • Monti M.
        • Sesana S.
        • Mellesi L.
        • Ghidoni R.
        • Caputo R.
        Abnormality of water barrier function in psoriasis. Role of ceramide fractions.
        Arch. Dermatol. 1994; 130: 452-456
        • Mojumdar E.H.
        • Kariman Z.
        • van Kerckhove L.
        • Gooris G.S.
        • Bouwstra J.A.
        The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes.
        Biochim. Biophys. Acta. 2014; 1838: 2473-2483
        • Van Smeden J.
        • Janssens M.
        • Kaye E.C.
        • Caspers P.J.
        • Lavrijsen A.P.
        • Vreeken R.J.
        • Bouwstra J.A.
        The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients.
        Exp. Dermatol. 2014; 23: 45-52
        • Daniël G.
        • Poole D.S.
        • Gooris G.S.
        • Bouwstra J.A.
        Is an orthorhombic lateral packing and a proper lamellar organization important for the skin barrier function?.
        Biochim. Biophys. Acta. 2011; 1808: 1529-1537
        • Oguri M.
        • Gooris G.S.
        • Bito K.
        • Bouwstra J.A.
        The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes.
        Biochim. Biophys. Acta. 2014; 1838: 1851-1861
        • Smith K.R.
        • Thiboutot D.M.
        Thematic review series: skin lipids Sebaceous gland lipids: friend or foe?.
        J. Lipid Res. 2008; 49: 271-281
        • De Luca C.
        • Valacchi G.
        Surface lipids as multifunctional mediators of skin responses to environmental stimuli.
        Mediat. Inflamm. 2010; 2010: 321494
        • Shi V.Y.
        • Leo M.
        • Hassoun L.
        • Chahal D.S.
        • Maibach H.I.
        • Sivamani R.K.
        Role of sebaceous glands in inflammatory dermatoses.
        J. Am. Acad. Dermatol. 2015; 73: 856-863
        • Ohsawa K.
        • Watanabe T.
        • Matsukawa R.
        • Yoshimura Y.
        • Imaeda K.
        The possible role of squalene and its peroxide of the sebum in the occurrence of sunburn and protection from the damage caused by U.V. irradiation.
        J. Toxicol. Sci. 1984; 9: 151-159
        • Pappas A.
        Epidermal surface lipids.
        Dermatoendocrinology. 2009; 1: 72-76
        • Hatano Y.
        • Terashi H.
        • Arakawa S.
        • Katagiri K.
        Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis.
        J. Invest. Dermatol. 2005; 124: 786-792
        • Feingold K.R.
        The adverse effect of IFN gamma on stratum corneum structure and function in psoriasis and atopic dermatitis.
        J. Invest. Dermatol. 2014; 134: 597-600
        • Danso M.O.
        • van Drongelen V.
        • Mulder A.
        • van Esch J.
        • Scott H.
        • van Smeden J.
        • El Ghalbzouri A.
        • Bouwstra J.A.
        TNF-α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents.
        J. Invest. Dermatol. 2014; 134: 1941-1950
        • Tawada C.
        • Kanoh H.
        • Nakamura M.
        • Mizutani Y.
        • Fujisawa T.
        • Banno Y.
        • Seishima M.
        Interferon-γ decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis.
        J. Invest. Dermatol. 2014; 134: 712-718
        • Danso M.O.
        • Boiten W.
        • van Drongelen V.
        • Gmelig K.M.
        • Gooris G.
        • El Ghalbzouri A.
        • Absalah S.
        • Vreeken R.
        • Kezic S.
        • van Smeden J.
        • Lavrijsen A.P.M.
        • Bouwstra J.A.
        Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition.
        J. Dermatol. Sci. 2017; (pii: S0923-1811(16)): 30793-30799
        • Tóth B.I.
        • Oláh A.
        • Szöllősi A.G.
        • Czifra G.
        • Bíró T.
        Sebocytes’ makeup-novel mechanisms and concepts in the physiology of the human sebaceous glands.
        Pflugers Arch.-Eur. J. Physiol. 2011; 461: 593-606
        • Chuong C.M.
        • Nickoloff B.J.
        • Elias P.M.
        • Goldsmith L.A.
        • Macher E.
        • Maderson P.A.
        • Sundberg J.P.
        • Tagami H.
        • Plonka P.M.
        • Thestrup-Pederson K.
        • Bernard B.A.
        • Schröder J.M.
        • Dotto P.
        • Chang C.M.
        • Williams M.L.
        • Feingold K.R.
        • King L.E.
        • Kligman A.M.
        • Rees J.L.
        • Christophers E.
        What is the ‘true’ function of skin?.
        Exp. Dermatol. 2002; 11: 159-160
        • Sertznig P.
        • Reichrath J.
        Peroxisome proliferator-activated receptors (PPARs) in dermatology: challenge and promise.
        Dermatoendocrinology. 2011; 3: 130-135
        • Bishop-Bailey D.
        • Wray J.
        Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation.
        Prostaglandins Other Lipid Mediat. 2003; 71: 1-22
        • Benoit G.
        • Cooney A.
        • Giguere V.
        • Ingraham H.
        • Lazar M.
        • Muscat G.
        • Perlmann T.
        • Renaud J.P.
        • Schwabe J.
        • Sladek F.
        • Tsai M.J.
        • Laudet V.
        International union of pharmacology. LXVI. Orphan nuclear receptors.
        Pharmacol. Rev. 2006; 58: 798-836
        • Mansour M.
        The roles of peroxisome proliferator-activated receptors in the metabolic syndrome.
        Prog. Mol. Biol. Transl. Sci. 2014; 121: 217-266
        • Schupp M.
        • Lazar A.M.
        Endogenous ligands for nuclear receptors: digging deeper.
        J. Biol. Chem. 2010; 285: 40409-40415
        • Straus D.S.
        • Glass C.K.
        Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms.
        Trends Immunol. 2007; 28: 551-558
        • Varga T.
        • Czimmerer Z.
        • Nagy L.
        PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation.
        Biochim. Biophys. Acta. 2011; 1812: 1007-1022
        • Sertznig P.
        • Seifert M.
        • Tilgen W.
        • Reichrath J.
        Peroxisome proliferator-activated receptors (PPARs) and the human skin: importance of PPARs in skin physiology and dermatologic diseases.
        Am. J. Clin. Dermatol. 2008; 9: 15-31
        • Narala V.R.
        • Subramani P.A.
        • Narasimha V.R.
        • Shaik F.B.
        • Panati K.
        The role of nitrated fatty acids and peroxisome proliferator-activated receptor gamma in modulating inflammation.
        Int. Immunopharmacol. 2014; 23: 283-287
        • Sahebkar A.
        • Chew G.T.
        • Watts G.F.
        New peroxisome proliferator-activated receptor agonists: potential treatments for atherogenic dyslipidemia and non-alcoholic fatty liver disease.
        Expert Opin. Pharmacother. 2014; 15: 493-503
        • Schmuth M.
        • Moosbrugger-Martinz V.
        • Blunder S.
        • Dubrac S.
        Role of PPAR LXR, and PXR in epidermal homeostasis and inflammation.
        Biochim. Biophys. Acta. 2014; 1841: 463-473
        • Adachi Y.
        • Hatano Y.
        • Sakai T.
        • Fujiwara S.
        Expressions of peroxisome proliferator-activated receptors (PPARs) are directly influenced by permeability barrier abrogation and inflammatory cytokines and depressed PPARalpha modulates expressions of chemokines and epidermal differentiation-related molecules in keratinocytes.
        Exp. Dermatol. 2013; 22: 606-608
        • Dubrac S.
        • Schmuth M.
        PPAR-alpha in cutaneous inflammation.
        Dermatoendocrinology. 2011; 3: 23-26
        • Tyagi S.
        • Gupta P.
        • Saini A.S.
        • Kaushal C.
        • Sharma S.
        The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases.
        J. Adv. Pharm. Technol. Res. 2011; 2: 236-240
        • Fluhr J.W.
        • Man M.Q.
        • Hachem J.P.
        • Crumrine D.
        • Mauro T.M.
        • Elias P.M.
        • Feingold K.R.
        Topical peroxisome proliferator activated receptor activators accelerate postnatal stratum corneum acidification.
        J. Invest. Dermatol. 2009; 129: 365-374
        • Briganti S.
        • Flori E.
        • Mastrofrancesco A.
        • Kovacs D.
        • Camera E.
        • Ludovici M.
        • Cardinali G.
        • Picardo M.
        Azelaic acid reduced senescence-like phenotype in photo-irradiated human dermal fibroblasts: possible implication of PPARgamma.
        Exp. Dermatol. 2013; 22: 41-47
        • Flori E.
        • Mastrofrancesco A.
        • Kovacs D.
        • Ramot Y.
        • Briganti S.
        • Bellei B.
        • Paus R.
        • Picardo M.
        2,4,6-Octatrienoic acid is a novel promoter of melanogenesis and antioxidant defence in normal human melanocytes via PPAR-gamma activation.
        Pigment Cell Melanoma Res. 2011; 24: 618-630
        • Okuno Y.
        • Matsuda M.
        • Miyata Y.
        • Fukuhara A.
        • Komuro R.
        • Shimabukuro M.
        • Shimomura I.
        Human catalase gene is regulated by peroxisome proliferator activated receptor-gamma through a response element distinct from that of mouse.
        Endocr. J. 2010; 57: 303-309
        • Wei J.
        • Bhattacharyya S.
        • Varga J.
        Peroxisome proliferator-activated receptor gamma: innate protection from excessive fibrogenesis and potential therapeutic target in systemic sclerosis.
        Curr. Opin. Rheumatol. 2010; 22: 671-676
        • Shi X.
        • Eastwood M.
        • Stratton R.J.
        • Denton C.P.
        • Leask A.
        • Abraham D.J.
        Rosiglitazone alleviates the persistent fibrotic phenotype of lesional skin scleroderma fibroblasts.
        Rheumatology (Oxford). 2010; 49: 259-263
        • Fritsch M.
        • Orfanos C.E.
        • Zouboulis C.C.
        Sebocytes are the key regulators of androgen homeostasis in human skin.
        J. Invest. Dermatol. 2001; 116: 793-800
        • Rosenfield R.L.
        • Deplewski D.
        • Kentsis A.
        • Ciletti N.
        Mechanisms of androgen induction of sebocyte differentiation.
        Dermatology. 1998; 196: 43-46
        • Chen W.
        • Yang C.C.
        • Sheu H.M.
        • Seltmann H.
        • Zouboulis C.C.
        Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes.
        J. Invest. Dermatol. 2003; 121: 441-447
        • Bíró T.
        • Tóth B.I.
        • Haskó G.
        • Paus R.
        • Pacher P.
        The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities.
        Trends Pharmacol. Sci. 2009; 30: 411-420
        • Pistis M.
        • Melis M.
        From surface to nuclear receptors: the endocannabinoid family extends its assets.
        Curr. Med. Chem. 2010; 17: 1450-1467
        • Mackie K.
        • Brewer H.B.
        • Cota D.
        • Cravatt B.F.
        • Di Marzo V.
        • Ginsberg H.N.
        • Howlett A.
        • Reggio P.H.
        • Woods S.C.
        The Endocannabinoid System Handbook. Scientiae.
        2008 (Available via Endocannabinoid System Network (ECSN))
        • Dobrosi N.
        • Toth B.I.
        • Nagy G.
        • Dozsa A.
        • Geczy T.
        • Nagy L.
        • Zouboulis C.C.
        • Paus R.
        • Kovacs L.
        • Biro T.
        Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling.
        FASEB J. 2008; 22: 3685-3695
        • Alestas T.
        • Ganceviciene R.
        • Fimmel S.
        • Muller-Decker K.
        • Zouboulis C.C.
        Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands.
        J. Mol. Med. 2006; 84: 75-87
        • Funk C.D.
        Prostaglandins and leukotrienes: advances in eicosanoid biology.
        Science. 2001; 294: 1871-1875
        • Zhang Q.
        • Seltmann H.
        • Zouboulis C.C.
        • Konger R.L.
        Involvement of PPARgamma in oxidative stress-mediated prostaglandin E(2) production in SZ95 human sebaceous gland cells.
        J. Invest. Dermatol. 2006; 126: 42-48
        • Yoshikazu U.
        Ceramide signaling in mammalian epidermis.
        Biochim. Biophys. Acta. 2014; 1841: 453-462
        • Zheng W.
        • Kollmeyer J.
        • Symolon H.
        • Momin A.
        • Munter E.
        • Wang E.
        • Kelly S.
        • Allegood J.C.
        • Liu Y.
        • Peng Q.
        Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy.
        Biochim. Biophys. Acta. 2006; 1758: 1864-1884
        • Hannun Y.A.
        • Obeid L.M.
        The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind.
        J. Biol. Chem. 2002; 277: 25847-25850
        • Cha H.J.
        • He C.
        • Zhao H.
        • Dong Y.
        • An I.S.
        • An S.
        Intercellular and intracellular functions of ceramides and their metabolites in skin (Review).
        Int. J. Mol. Med. 2016; 38: 16-22
        • Chalfant C.E.
        • Szulc Z.
        • Roddy P.
        • Bielawska A.
        • Hannun Y.A.
        The structural requirements for ceramide activation of serine-threonine protein phosphatases.
        J. Lipid Res. 2004; 45: 496-506
        • Lozano J.
        • Berra E.
        • Municio M.M.
        • Diaz-Meco M.T.
        • Dominguez I.
        • Sanz L.
        • Moscat J.
        Protein kinase C zeta isoformis critical for kappa B-dependent promoter activation by sphingomyelinase.
        J. Biol. Chem. 1994; 269: 19200-19202
        • Heinrich M.
        • Wickel M.
        • Schneider-Brachert W.
        • Sandberg C.
        • Gahr J.
        • Schwandner R.
        • Weber T.
        • Saftig P.
        • Peters C.
        • Brunner J.
        • Kronke M.
        • Schutze S.
        Cathepsin D targeted by acid sphingomyelinase-derived ceramide.
        EMBO J. 1999; 18: 5252-5263
        • Zhang Y.
        • Yao B.
        • Delikat S.
        • Bayoumy S.
        • Lin X.H.
        • Basu S.
        • McGinley M.
        • Chan-Hui P.Y.
        • Lichenstein H.
        • Kolesnick R.
        Kinase suppressor of Ras is ceramide-activated protein kinase.
        Cell. 1997; 89: 63-72
        • Lee J.Y.
        • Hannun Y.A.
        • Obeid L.M.
        Ceramide inactivates cellular protein kinase Calpha.
        J. Biol. Chem. 1996; 271: 13169-13174
        • Zhou H.
        • Summers S.A.
        • Birnbaum M.J.
        • Pittman R.N.
        Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis.
        J. Biol. Chem. 1998; 273: 16568-16575
        • Lacour S.
        • Hammann A.
        • Grazide S.
        • Lagadic-Gossmann D.
        • Athias A.
        • Sergent O.
        • Laurent G.
        • Gambert P.
        • Solary E.
        • Dimanche-Boitrel M.T.
        Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells.
        Cancer Res. 2004; 64: 3593-3598
        • Modrak D.E.
        • Cardillo T.M.
        • Newsome G.A.
        • Goldenberg D.M.
        • Gold D.V.
        Synergistic interaction between sphingomyelin and gemcitabine potentiates ceramide-mediated apoptosis in pancreatic cancer.
        Cancer Res. 2004; 64: 8405-8410
        • Scheel-Toellner D.
        • Wang K.
        • Craddock R.
        • Webb P.R.
        • McGettrick H.M.
        • Assi L.K.
        • Parkes N.
        • Clough L.E.
        • Gulbins E.
        • Salmon M.
        • Lord J.M.
        Reactive oxygen species limit neutrophil life span by activating death receptor signaling.
        Blood. 2004; 104: 2557-2564
        • Grassme H.
        • Cremesti A.
        • Kolesnick R.
        • Gulbins E.
        Ceramide-mediated clustering is required for CD95-DISC formation.
        Oncogene. 2003; 22: 5457-5470
        • Grassme H.
        • Jekle A.
        • Riehle A.
        • Schwarz H.
        • Berger J.
        • Sandhoff K.
        • Kolesnick R.
        • Gulbins E.
        CD95 signaling via ceramide-rich membrane rafts.
        J. Biol. Chem. 2001; 276: 20589-20596
        • Gulbins E.
        • Kolesnick R.
        Raft ceramide in molecular medicine.
        Oncogene. 2003; 22: 7070-7077
        • Haimovitz-Friedman A.
        • Kan C.C.
        • Ehleiter D.
        • Persaud R.S.
        • McLoughlin M.
        • Fuks Z.
        • Kolesnick R.N.
        Ionizing radiation acts on cellularmembranes to generate ceramide and initiate apoptosis.
        J. Exp. Med. 1994; 180: 525-535
        • Riboni L.
        • Prinetti A.
        • Bassi R.
        • Caminiti A.
        • Tettamanti G.
        A mediator role of ceramide in the regulation of neuroblastoma Neuro2a cell differentiation.
        J. Biol. Chem. 1995; 270: 26868-26875
        • Gulbins E.
        • Coggeshall K.M.
        • Brenner B.
        • Schlottmann K.
        • Linderkamp O.
        • Lang F.
        Fas-induced apoptosis is mediated by activation of a Ras and Rac protein-regulated signaling pathway.
        J. Biol. Chem. 1996; 271: 26389-26394
        • Jarvis W.D.
        • Kolesnick R.N.
        • Fornari F.A.
        • Traylor R.S.
        • Gewirtz D.A.
        • Grant S.
        Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway.
        Proc. Natl. Acad. Sci. 1994; 91: 73-77
        • Schütze S.
        • Machleidt T.
        • Krönke M.
        The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction.
        J. Leukoc. Biol. 1994; 56: 533-541
        • Edelmann B.
        • Bertsch U.
        • Tchikov V.
        • Winoto-Morbach S.
        • Perrotta C.
        • Jakob M.
        • Adam-Klages S.
        • Kabelitz D.
        • Schütze S.
        Caspase-8 and caspase-7 sequentiallymediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes.
        EMBO J. 2011; 30: 379-394
        • Heinrich M.
        • Neumeyer J.
        • Jakob M.
        • Hallas C.
        • Tchikov V.
        • Winoto-Morbach S.
        • Wickel M.
        • Schneider-Brachert W.
        • Trauzold A.
        • Hethke A.
        • Schütze S.
        Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation.
        Cell Death Differ. 2004; 11: 550-563
        • Boesen-de Cock J.G.
        • Tepper A.D.
        • de Vries E.
        • van Blitterswijk W.J.
        • Borst J.
        Common regulation of apoptosis signaling induced by CD95 and the DNA-damaging stimuli etoposide and gamma-radiation downstream from caspase-8 activation.
        J. Biol. Chem. 1999; 274: 14255-14261
        • Kashkar H.
        • Wiegmann K.
        • Yazdanpanah B.
        • Haubert D.
        • Krönke M.
        Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane.
        J. Biol. Chem. 2005; 280: 20804-20813
        • Stoica B.A.
        • Movsesyan V.A.
        • Knoblach S.M.
        • Faden A.I.
        Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins.
        Mol. Cell. Neurosci. 2005; 29: 355-371
        • Susin S.A.
        • Zamzami N.
        • Castedo M.
        • Daugas E.
        • Wang H.G.
        • Geley S.
        • Fassy F.
        • Reed J.C.
        • Kroemer G.
        The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramideinduced apoptosis.
        J. Exp. Med. 1997; 186: 25-37
        • Siskind L.J.
        • Kolesnick R.N.
        • Colombini M.
        Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins.
        J. Biol. Chem. 2002; 277: 26796-26803
        • Lamour N.F.
        • Wijesinghe D.S.
        • Mietla J.A.
        • Ward K.E.
        • Stahelin R.V.
        • Chalfant C.E.
        Ceramide kinase regulates the production of tumor necrosis factor alpha (TNFalpha) via inhibition of TNFalpha-converting enzyme.
        J. Biol. Chem. 2011; 286: 42808-42817
        • Hankins J.L.
        • Fox T.E.
        • Barth B.M.
        • Unrath K.A.
        • Kester M.
        Exogenous ceramide-1-phosphate reduces lipopolysaccharide (LPS)-mediated cytokine expression.
        J. Biol. Chem. 2011; 286: 44357-44366
        • Gangoiti P.
        • Granado M.H.
        • Arana L.
        • Ouro A.
        • Gomez-Muñoz A.
        Activation of protein kinase C-alpha is essential for stimulation of cell proliferation by ceramide 1-phosphate.
        FEBS Lett. 2010; 584: 517-524
        • Kim T.J.
        • Kang Y.J.
        • Lim Y.
        • Lee H.W.
        • Bae K.
        • Lee Y.S.
        • Yoo J.M.
        • Yoo H.S.
        • Yun Y.P.
        Ceramide 1-phosphate induces neointimal formation via cell proliferation and cell cycle progression upstream of ERK1/2 in vascular smooth muscle cells.
        Exp. Cell Res. 2011; 317: 2041-2051
        • Kim C.
        • Schneider G.
        • Abdel-Latif A.
        • Mierzejewska K.
        • Sunkara M.
        • Borkowska S.
        • Ratajczak J.
        • Morris A.J.
        • Kucia M.
        • Ratajczak M.Z.
        Ceramide-1-phosphate regulates migration of multipotent stromal cells and endothelial progenitor cells-implications for tissue regeneration.
        Stem Cells. 2013; 31: 500-510
        • Hankins J.L.
        • Ward K.E.
        • Linton S.S.
        • Barth B.M.
        • Stahelin R.V.
        • Fox T.E.
        • Kester M.
        Ceramide-1-phosphate mediates endothelial cell invasion via the annexin a2/p11 heterotetrameric protein complex.
        J. Biol. Chem. 2013; 288: 19726-19738
        • Sauer B.
        • Vogler R.
        • von Wenckstern H.
        • Fujii M.
        • Anzano M.B.
        • Glick A.B.
        • Schafer-Korting M.
        • Roberts A.B.
        • Kleuser B.
        Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes.
        J. Biol. Chem. 2004; 279: 38471-38479
        • Drake D.R.
        • Brogden K.A.
        • Dawson D.V.
        • Wertz P.W.
        Thematic review series: skin lipids. Antimicrobial lipids at the skin surface.
        J. Lipid Res. 2008; 49: 4-11
        • Moissl-Eichinger C.
        • Probst A.J.
        • Birarda G.
        • Auerbach A.
        • Koskinen K.
        • Wolf P.
        • Holman H.N.
        Human age and skin physiology shape diversity and abundance of Archaea on skin.
        Sci. Rep. 2017; 7: 4039
        • Marrs T.
        • Flohr C.
        The role of skin and gut microbiota in the development of atopic eczema.
        Br. J. Dermatol. 2016; 175: 13-18
        • Elsner P.
        Antimicrobials and the skin physiological and pathological flora.
        Curr. Probl. Dermatol. 2006; 33: 35-41
        • Souvik M.
        • Mitra R.
        • Maitra A.
        • Gupta S.
        • Kumaran S.
        • Chakrabortty A.
        • Majumderb P.P.
        Sebum and hydration levels in specific regions of human face significantly predict the nature and diversity of facial skin microbiome.
        Sci. Rep. 2016; 6: 36062
        • Wille J.J.
        • Kydonieus A.
        Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against grampositive bacteria.
        Skin Pharmacol. Appl. Skin Physiol. 2003; 16: 176-187
        • Moran J.C.
        • Alorabi J.A.
        • Horsburgh M.J.
        Comparative transcriptomics reveals discrete survival responses of S. aureus and S. epidermidis to sapienic acid.
        Front. Microbiol. 2017; 8: 33-44
        • Fearon D.T.
        • Locksley R.M.
        The instructive role of innate immunity in the acquired immune response.
        Science. 1996; 272: 50-53
        • Stettler H.
        • Kurka P.
        • Lunau N.
        • Manger C.
        • Böhling A.
        • Bielfeldt S.
        • Wilhelm K.P.
        • Dähnhardt-Pfeiffer S.
        • Dähnhardt D.
        • Brill F.H.
        • Lenz H.
        A new topical panthenol-containing emollient: results from two randomized controlled studies assessing its skin moisturization and barrier restoration potential, and the effect on skin microflora.
        J. Dermatolo. Treat. 2017; 28: 173-180
        • Shu M.
        • Wang Y.
        • Yu J.
        • Kuo S.
        • Coda A.
        • Jiang Y.
        Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus.
        PLoS One. 2013; 8: e55380
        • Bomar L.
        • Brugger S.D.
        • Yost B.H.
        • Davies S.S.
        • Lemon K.P.
        Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols.
        MBio. 2016; 7: e01725-15
        • Vinolo M.A.
        • Rodrigues H.G.
        • Nachbar R.T.
        • Curi R.
        Regulation of inflammation by short chain fatty acids.
        Nutrients. 2011; 3: 858-876
        • Chen T.H.
        • Chen W.M.
        • Hsu K.H.
        • Kuo C.D.
        • Hung S.C.
        Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells.
        Biochem. Biophys. Res. Commun. 2007; 355: 913-918
        • Nodake Y.
        • Matsumoto S.
        • Miura R.
        • Honda H.
        • Ishibashi G.
        • Matsumoto S.
        • Dekio I.
        • Sakakibara R.
        Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe-a blinded randomized clinical trial.
        J. Dermatol. Sci. 2015; 79: 119-126
        • Triebl A.
        • Trötzmüller M.
        • Hartler J.
        • Stojakovic T.
        • Köfeler H.C.
        Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples.
        J. Chromatogr. B Analy. Technol. Biomed. Life Sci. 2017; 1053: 72-80
        • Jia Z.X.
        • Zhang J.L.
        • Shen C.P.
        • Ma L.
        Profile and quantification of human stratum corneum ceramides by normal-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: development of targeted lipidomic method and application to human stratum corneum of different age groups.
        Anal. Bioanal. Chem. 2016; 408: 6623-6636

      Biography

      Yan Jia is an Associate Professor of biology at Beijing Technology and Business University. He has a Ph.D. in biochemistry and molecular biology from Wuhan University, and his research interests are lipidomics and the function of skin lipids to skin state. His papers have been published in FEBS Letters, Biochemical and Biophysical Research Communications, International Journal of Cosmetic Science, and Journal of Cosmetic Dermatology.

      Biography

      Yao Gan a postgraduate of School of Science in Beijing Technology and Business University.

      Biography

      Congfen He a professor of School of Science in Beijing Technology and Business University.

      Biography

      Zhou Chen a chief physician of Department of Dermatology in Peking University People’s Hospital.

      Biography

      Cheng Zhou an associate chief physician of Department of Dermatology in Peking University People’s Hospital.