Research Article| Volume 90, ISSUE 3, P241-252, June 2018

Proteins involved in the antioxidant and inflammatory response in rutin-treated human skin fibroblasts exposed to UVA or UVB irradiation

Published:February 15, 2018DOI:


      • Rutin maintenances proteomic balance following UVA and UVB radiation.
      • Rutin is more effective against UVA-induced protein expression than UVB.
      • Rutin partially restored the UVB-induced expression of proapoptotic proteins.
      • UVB radiation activates Nrf2 through rutin-keap1 adducts formation.
      • Rutin is a potential protective agent against the cellular solar radiation effect.



      Rutin, due to its polyphenolic structure, has antioxidant properties and can be used as a cytoprotective compound against UV-induced effects on skin cells.


      The aim of this study was to examine the effect of rutin on proteomic profile in human skin fibroblasts irradiated with UV dose that induces apoptosis.


      Proteome analysis based on the results obtained by the QExactive OrbiTrap mass spectrometer.


      Results show that rutin treatment more strongly protects against UVA-induced rather than UVB-induced increases in the total expression of proteins involved in antioxidant (such as SOD, TrxR, and Prxs 1/2) and inflammatory response (e.g., IL-17F, PAK2, and YWHAZ). However, in the case of UVB-irradiated cells, rutin additionally enhances the levels of disulfide-isomerase − an enzyme that is responsible for the formation and breakage of disulfide bonds. Moreover, UVB radiation promotes rutin-Keap1 adduct formation, which leads to the activation of Nrf2, a factor that is responsible for the synthesis of cytoprotective proteins. Furthermore, rutin partially prevents UV-induced apoptosis by restoring the physiological levels of p53, cytochrome c, and cell cycle and apoptosis regulator protein 2 that were increased following irradiation.


      In conclusion, our results show that rutin effectively prevents UV-induced damages associated with proinflammatory and prooxidative activity and protects cells against apoptosis.


      AKT (protein kinase B), AMBIC (ammonium bicarbonate), Bad (Bcl-2-associated death promoter), Bax (bcl-2-like protein 4), Bcl-2 (B-cell lymphoma 2 protein), Bcl-XL (B-cell lymphoma-extra-large protein), CCAR2 (cell cycle/apoptosis regulator protein 2), DFF (DNA fragmentation factor), DMEM (Dulbecco’s modified eagle medium), ESI (electrospray ionization source), Hsp32, 70, 90A A1 (heat shock proteins 32, 70, or 90A A1), ILF3 (interleukin enhancer binding factor 3), Keap1 (kelch-like ECH-associated protein 1), MAPK9 (mitogen-activated protein kinase 9), mTOR (mechanistic target of rapamycin), NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells), Nrf2 (nuclear erythroid-derived factor 2), PAK2 (p21 activated kinase 2), PBS (phosphate-buffered saline), PCA (principal component analysis), PKC (protein kinase C), PLA2 (phospholipase A2), PLAA (phospholipase A2 activating protein), Prxs (peroxiredoxin), PUFA (polyunsaturated fatty acid), Raf (serine/threonine-specific protein kinase), ROS (reactive oxygen species), SOD (superoxide dismutase), TDPX (thioredoxin-dependent peroxide reductase), Thrx (thioredoxin), TNFα (tumor necrosis factor alpha), TrxR (thioredoxin reductases), YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Han M.J.
        • Lee S.Y.
        Proteome profiling and its use in metabolic and cellular engineering.
        Proteomics. 2003; 3: 2317-2324
        • Padgaonkar V.A.
        • Leverenz V.R.
        • Bhat A.V.
        • Pelliccia S.E.
        • Giblin F.J.
        Thioredoxin reductase activity may be more important than GSH level in protecting human lens epithelial cells against UVA light.
        Photochem. Photobiol. 2015; 91: 387-396
        • Gęgotek A.
        • Biernacki M.
        • Ambrożewicz E.
        • Surażyński A.
        • Wroński A.
        • Skrzydlewska E.
        The cross-talk between electrophiles, antioxidant defence and the endocannabinoid system in fibroblasts and keratinocytes after UVA and UVB irradiation.
        J. Dermatol. Sci. 2016; 81: 107-117
        • Cadet J.
        • Berger M.
        • Douki T.
        • Morin B.
        • Raoul S.
        • Ravanat J.L.
        • et al.
        Effects of UV and visible radiation on DNA-final base damage.
        Biol. Chem. 1997; 378: 1275-1286
        • Marathe G.K.
        • Harrison K.A.
        • Murphy R.C.
        • Prescott S.M.
        • Zimmerman G.A.
        • McIntyre T.M.
        Bioactive phospholipid oxidation products.
        Free. Radic. Biol. Med. 2000; 28: 1762-1770
        • Łuczaj W.
        • Gęgotek A.
        • Skrzydlewska E.
        Antioxidants and HNE in redox homeostasis.
        Free. Radic. Biol Med. 2017; 111: 87-101
        • Jonak C.
        • Klosner G.
        • Trautinger F.
        Significance of heat shock proteins in the skin upon UV exposure.
        Front. Biosci. (Landmark Ed.). 2008; 14: 4758-4768
        • Grune T.
        • Merker K.
        • Sandig G.
        • Davies K.J.
        Selective degradation of oxidatively modified protein substrates by the proteasome.
        Biochem. Biophys. Res. Commun. 2003; 305: 709-718
        • Cuervo A.M.
        • Wong E.S.
        • Martinez-Vicente M.
        Protein degradation, aggregation, and misfolding.
        Mov. Disord. 2010; 25: S49-S54
        • Munshi A.
        • Ramesh R.
        Mitogen-activated protein kinases and their role in radiation response.
        Gene Cancer. 2013; 4: 401-408
        • Hsiao Y.P.
        • Yang J.H.
        • Wu W.J.
        • Lin M.H.
        • Sheu G.T.
        E6 and E7 of human papillomavirus type 18 and UVB irradiation corporately regulate interleukin-6 and interleukin-8 expressions in basal cell carcinoma.
        Exp. Dermatol. 2013; 22: 672-674
        • Świeca M.
        • Gawlik-Dziki U.
        • Dziki D.
        • Baraniak B.
        • Czyż J.
        The influence of protein–flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin.
        Food Chem. 2013; 141: 451-458
        • Gęgotek A.
        • Rybałtowska-Kawałko P.
        • Skrzydlewska E.
        Rutin as a mediator of lipid metabolism and cellular signaling pathways interactions in fibroblasts altered by UVA and UVB radiation.
        Oxid. Med. Cell Longev. 2017; : 1-20
        • Kreft I.
        • Fabjan N.
        • Yasumoto K.
        Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products.
        Food Chem. 2006; 98: 508-512
        • Hosseinzadeh H.
        • Nassiri-Asl M.
        Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid.
        J. Endocrinol. Invest. 2014; 37: 783-788
        • Yang J.
        • Guo J.
        • Yuan J.
        In vitro antioxidant properties of rutin.
        J. Food Sci. Technol. 2008; 41: 1060-1066
        • Zvezdanović J.B.
        • Stanojević J.S.
        • Marković D.Z.
        • Cvetković D.J.
        Irreversible UV-induced quercetin and rutin degradation in solution, studied by UV-spectrophotometry and HPLC chromatography.
        J. Serb. Chem. Soc. 2012; 77: 297-312
        • Fotakis G.
        • Timbrell J.A.
        In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride.
        Toxicol. Lett. 2006; 160: 171-177
        • Lisi S.
        • Botta R.
        • Lemmi M.
        • Sellari-Franceschini S.
        • Altea M.A.
        • Sisti E.
        • et al.
        Quercetin decreases proliferation of orbital fibroblasts and their release of hyaluronic acid.
        J. Endocrinol. Invest. 2011; 34: 521-527
        • Bradford M.M.
        A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
        Anal. Biochem. 1976; 72: 248-254
        • Palmer H.
        • Ohta M.
        • Watanabe M.
        • Suzuki T.
        Oxidative stress-induced cellular damage caused by UV and methyl viologen in Euglena gracilis and its suppression with rutin.
        J. Photochem. Photobiol. B. 2002; 67: 116-129
        • Tran Y.
        • Joung K.
        • Lih E.
        • Park K.D.
        In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing.
        Biomacromolecules. 2011; 12: 2872-2880
        • Chiricozzi A.
        • Guttman-Yassky E.
        • Suárez-Fariñas M.
        • Nograles K.E.
        • Tian S.
        • Cardinale I.
        • et al.
        Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis.
        J. Invest. Dermatol. 2011; 131: 677-687
        • Roussel L.
        • Houle F.
        • Chan C.
        • Yao Y.
        • Bérubé J.
        • Olivenstein R.
        • et al.
        IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation.
        J. Immunol. 2010; 184: 4531-4537
        • Martin D.A.
        • Towne J.E.
        • Kricorian G.
        • Klekotka P.
        • Gudjonsson J.E.
        • Krueger J.G.
        • Russell C.B.
        The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings.
        J. Invest. Dermatol. 2013; 133: 17-26
        • Nakamura N.
        • Yamauchi T.
        • Hiramoto M.
        • Yuri M.
        • Naito M.
        • Takeuchi M.
        • et al.
        Interleukin enhancer-binding factor 3/NF110 is a target of YM155, a suppressant of survivin.
        Mol. Cell. Proteomics. 2012; 11
        • Chaumet A.
        • Castella S.
        • Gasmi L.
        • Fradin A.
        • Clodic G.
        • Bolbach G.
        • et al.
        Proteomic analysis of interleukin enhancer binding factor 3 (Ilf3) and nuclear factor 90 (NF90) interactome.
        Biochimie. 2013; 95: 1146-1157
        • García-Lafuente A.
        • Guillamón E.
        • Villares A.
        • Rostagno M.A.
        • Martínez J.A.
        Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease.
        Inflamm. Res. 2009; 58: 537-552
        • Bishop S.C.
        • Burlison J.A.
        • Blagg J.
        • Brian S.
        Hsp90: a novel target for the disruption of multiple signaling cascades.
        Curr. Cancer Drug Targets. 2007; 7: 369-388
        • Pugliese L.
        • Georg R.C.
        • Fietto L.G.
        • Gomes S.L.
        Expression of genes encoding cytosolic and endoplasmic reticulum HSP90 proteins in the aquatic fungus Blastocladiella emersonii.
        Gene. 2008; 11: 59-68
        • Min Y.D.
        • Choi C.H.
        • Bark H.
        • Son H.Y.
        • Park H.H.
        • Lee S.
        • et al.
        Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line.
        Inflamm. Res. 2007; 56: 210-215
        • Crespo I.
        • García-Mediavilla M.V.
        • Gutiérrez B.
        • Sánchez-Campos S.
        • Tuñón M.J.
        • González-Gallego J.
        A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells.
        Br. J. Nutr. 2008; 100: 968-976
        • Garrido C.
        • Solary E.
        A role of HSPs in apoptosis through protein triage?.
        Cell Death Differ. 2003; 10: 619-620
        • Qing G.
        • Yan P.
        • Qu Z.
        • Liu H.
        • Xiao G.
        Hsp90 regulates processing of NF-κB2 p100 involving protection of NF-κB-inducing kinase (NIK) from autophagy-mediated degradation.
        Cell Res. 2007; 17: 520-530
        • Yi H.
        • Bai Y.
        • Zhu X.
        • Zhao L.
        • Wu X.
        • Buch S.
        • et al.
        IL-17A induces MIP-1α expression in primary astrocytes via Src/MAPK/PI3K/NF-kB pathways: implications for multiple sclerosis.
        J. Neuroimmune Pharmacol. 2014; 9: 629-641
        • Kasinski A.
        • Dong X.
        • Khuri F.R.
        • Boss J.
        • Fu H.
        Transcriptional regulation of YWHAZ, the gene encoding 14-3-3ξ.
        PLoS One. 2014; 9: e93480
        • Weerasekara V.K.
        • Panek D.J.
        • Broadbent D.G.
        • Mortenson J.B.
        • Mathis A.D.
        • Logan G.N.
        • et al.
        Metabolic-stress-induced rearrangement of the 14-3-3ξ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ξ interaction with phosphorylated Atg9.
        Mol. Cell. Biol. 2014; 34: 4379-4388
        • Gijón M.A.
        • Leslie C.C.
        Regulation of arachidonic acid release and cytosolic phospholipase A2 activation.
        J. Leukoc. Biol. 1999; 65: 330-336
        • Campo S.
        • Baldrich P.
        • Messeguer J.
        • Lalanne E.
        • Coca M.
        • San Segundo B.
        Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation.
        Plant Physiol. 2014; 165: 688-704
        • Kosoff R.E.
        • Aslan J.E.
        • Kostyak J.C.
        • Dulaimi E.
        • Chow H.Y.
        • Prudnikova T.Y.
        • et al.
        Pak2 restrains endomitosis during megakaryopoiesis and alters cytoskeleton organization.
        Blood. 2015; 125: 2995-3005
        • Li T.
        • Zhang J.
        • Zhu F.
        • Wen W.
        • Zykova T.
        • Li X.
        • et al.
        P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation.
        Carcinogenesis. 2011; 32: 659-666
        • Li X.
        • Wen W.
        • Liu K.
        • Zhu F.
        • Malakhova M.
        • Peng C.
        • et al.
        Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines.
        J. Biol. Chem. 2011; 286: 22291-22299
        • Shiao H.Y.L.N.H.
        • Chan W.H.
        CdSe quantum dots induce apoptosis via activation of JNK and PAK2 in a human osteoblast cell line.
        J. Med. Biol. Eng. 2006; 26: 89-96
        • Kensler T.W.
        • Wakabayashi N.
        • Biswal S.
        Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.
        Annu. Rev. Pharmacol. Toxicol. 2007; 47: 89-116
        • Shibata T.
        • Ohta T.
        • Tong K.I.
        • Kokubu A.
        • Odogawa R.
        • Tsuta K.
        • et al.
        Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy.
        Proc. Natl. Acad. Sci. 2008; 105: 13568-13573
        • Liu Y.
        • Chan F.
        • Sun H.
        • Yan J.
        • Fan D.
        • Zhao D.
        • et al.
        Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression.
        Eur. J. Pharmacol. 2011; 650: 130-137
        • Kansanen E.
        • Bonacci G.
        • Schopfer F.J.
        • Kuosmanen S.M.
        • Tong K.I.
        • Leinonen H.
        • et al.
        Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism.
        J. Biol. Chem. 2011; 286: 14019-14027
        • Bayele H.K.
        • Debnam E.S.
        • Srai K.S.
        Nrf2 transcriptional derepression from Keap1 by dietary polyphenols.
        Biochem. Biophys. Res. Commun. 2016; 469: 521-528
        • Alía M.
        • Mateos R.
        • Ramos S.
        • Lecumberri E.
        • Bravo L.
        • Goya L.
        Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2).
        Eur. J. Nutr. 2006; 45: 19-28
        • Wood Z.A.
        • Schröder E.
        • Harris J.R.
        • Poole L.B.
        Structure, mechanism and regulation of peroxiredoxins.
        Trends Biochem. Sci. 2003; 28: 32-40
        • Ralat L.A.
        • Manevich Y.
        • Fisher A.B.
        • Colman R.F.
        Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes.
        Biochemistry. 2006; 45: 360-372
        • Arnér E.S.
        • Nakamura H.
        • Sasada T.
        • Yodoi J.
        • Holmgren A.
        • Spyrou G.
        Analysis of the inhibition of mammalian thioredoxin, thioredoxin reductase, and glutaredoxin by cis-diamminedichloroplatinum (II) and its major metabolite, the glutathione-platinum complex.
        Free Radic. Biol. Med. 2001; 31: 1170-1178
        • Jaronen M.
        • Goldsteins G.
        • Koistinaho J.
        ER stress and unfolded protein response in amyotrophic lateral sclerosis—a controversial role of protein disulphide isomerase.
        Front. Cell. Neurosci. 2014;
        • Davies M.J.
        • Truscott R.J.
        Photo-oxidation of proteins and its role in cataractogenesis.
        J. Photochem. Photobiol. B. 2001; 3: 114-125
        • Rinnerthaler M.
        • Bischof J.
        • Streubel M.K.
        • Trost A.
        • Richter K.
        Oxidative stress in aging human skin.
        Biomolecules. 2015; 5: 545-589
        • Campello S.
        • Strappazzon F.
        • Cecconi F.
        Mitochondrial dismissal in mammals, from protein degradation to mitophagy.
        Biochim. Biophys. Acta. 2014; 1837: 451-460
        • Ciechanover A.
        • Stanhill A.
        The complexity of recognition of ubiquitinated substrates by the 26S proteasome.
        Biochim. Biophys. Acta. 2014; 1843: 86-96
        • Wang P.
        • Xiong Y.
        • Ma C.
        • Shi T.
        • Ma D.
        Molecular cloning and characterization of novel human JNK2 (MAPK9) transcript variants that show different stimulation activities on AP-1.
        BMB Rep. 2010; 43: 738-743
        • Liang R.
        • Chen X.Q.
        • Bai Q.X.
        • Wang Z.
        • Zhang T.
        • Yang L.
        • et al.
        Increased 14-3-3ξ expression in the multidrug-resistant leukemia cell line HL-60/VCR as compared to the parental line mediates cell growth and apoptosis in part through modification of gene expression.
        Acta Haematol. 2014; 132: 177-186
        • Boehning D.
        • Patterson R.L.
        • Sedaghat L.
        • Glebova N.O.
        • Kurosaki T.
        • Snyder S.H.
        Cytochrome c binds to inositol (1, 4, 5) trisphosphate receptors, amplifying calcium-dependent apoptosis.
        Nat. Cell. Biol. 2003; 5: 1051-1061
        • Zhang J.Z.
        • Sinha M.
        • Luxon B.A.
        • Yu X.J.
        Survival strategy of obligately intracellular Ehrlichia chaffeensis: novel modulation of immune response and host cell cycles.
        Infect. Immun. 2004; 72: 498-507
        • Sirotkin A.V.
        • Ovcharenko D.
        • Benčo A.
        • Mlynček M.
        Protein kinases controlling PCNA and p53 expression in human ovarian cells.
        Funct. Integr. Genomics. 2009; 9: 185-195
        • Hamaguchi M.
        • Meth J.L.
        • Von Klitzing C.
        • Wei W.
        • Esposito D.
        • Rodgers L.
        • et al.
        DBC2, a candidate for a tumor suppressor gene involved in breast cancer.
        Proc. Natl. Acad. Sci. 2002; 99: 13647-13652
        • Kim W.
        • Kim J.E.
        Deleted in breast cancer 1 (DBC1) deficiency results in apoptosis of breast cancer cells through impaired responses to UV-induced DNA damage.
        Cancer. Lett. 2013; 333: 180-186
        • Zhao W.
        • Kruse J.P.
        • Tang Y.
        • Jung S.Y.
        • Qin J.
        • Gu W.
        Negative regulation of the deacetylase SIRT1 by DBC1.
        Nature. 2008; 451: 587-590
        • Sun D.
        • Yu F.
        • Ma Y.
        • Zhao R.
        • Chen X.
        • Zhu J.
        • et al.
        MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1).
        J. Biol. Chem. 2013; 288: 9508-9518