Advertisement
Review article| Volume 90, ISSUE 3, P232-240, June 2018

Mechanical forces in skin disorders

  • Chao-Kai Hsu
    Affiliations
    Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan

    International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
    Search for articles by this author
  • Hsi-Hui Lin
    Affiliations
    International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan

    Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
    Search for articles by this author
  • Hans I-Chen Harn
    Affiliations
    International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan

    Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
    Search for articles by this author
  • Michael W. Hughes
    Affiliations
    International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan

    Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
    Search for articles by this author
  • Ming-Jer Tang
    Affiliations
    International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan

    Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
    Search for articles by this author
  • Chao-Chun Yang
    Correspondence
    Corresponding author at: Department of Dermatology, National Cheng Kun University Hospital, 138 Sheng Li Rd., 704 Tainan, Taiwan.
    Affiliations
    Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan

    International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
    Search for articles by this author

      Abstract

      Mechanical forces are known to regulate homeostasis of the skin and play a role in the pathogenesis of skin diseases. The epidermis consists of keratinocytes that are tightly adhered to each other by cell junctions. Defects in keratins or desmosomal/hemidesmosomal proteins lead to the attenuation of mechanical strength and formation of intraepidermal blisters in the case of epidermolysis bullosa simplex. The dermis is rich in extracellular matrix, especially collagen, and provides the majority of tensile force in the skin. Keloid and hypertrophic scar, which is the result of over-production of collagen by fibroblasts during the wound healing, are associated with extrinsic tensile forces and changes of intrinsic mechanical properties of the cell. Increasing evidences shows that stiffness of the skin environment determines the regenerative ability during wound healing process. Mechanotransduction pathways are also involved in the morphogenesis and cyclic growth of hair follicles. The development of androgenetic alopecia is correlated to tensile forces generated by the fibrous tissue underlying the scalp. Acral melanoma predominantly occurs in the weight-bearing area of the foot suggesting the role of mechanical stress. Increased dermal stiffness from fibrosis might be the cause of recessive dystrophic epidermolysis bullosa associated squamous cell carcinoma. Strategies to change the mechanical forces or modify the mechanotransduction signals may lead to a new way to treat skin diseases and promote skin regeneration.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Watt F.M.
        • Fujiwara H.
        Cell-extracellular matrix interactions in normal and diseased skin.
        Cold Spring Harb. Perspect. Biol. 2011; 3
        • Bazzoni G.
        • Dejana E.
        Keratinocyte junctions and the epidermal barrier: how to make a skin-tight dress.
        J. Cell Biol. 2002; 156: 947-949
        • Harn H.I.
        • Hsu C.K.
        • Wang Y.K.
        • Huang Y.W.
        • Chiu W.T.
        • Lin H.H.
        • Cheng C.M.
        • Tang M.J.
        Spatial distribution of filament elasticity determines the migratory behaviors of a cell.
        Cell Adh. Migr. 2016; 10: 368-377
        • Harn H.I.
        • Wang Y.K.
        • Hsu C.K.
        • Ho Y.T.
        • Huang Y.W.
        • Chiu W.T.
        • Lin H.H.
        • Cheng C.M.
        • Tang M.J.
        Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts.
        Exp. Dermatol. 2015; 24: 579-584
        • LE
        • Tracy R.A.
        • Minasian E.J.
        Caterson, extracellular matrix and; dermal fibroblast function in the healing wound.
        Adv. Wound Care (New Rochelle). 2016; 5: 119-136
        • Dolivo D.M.
        • Larson S.A.
        • Dominko T.
        FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in human dermal fibroblasts.
        J. Dermatol. Sci. 2017; 88: 339-348
        • Harn H.I.
        • Ogawa R.
        • Hsu C.K.
        • Hughes M.W.
        • Tang M.J.
        • Chuong C.M.
        The Tension Biology of Wound Healing.
        Exp. Dermatol. 2017; 4https://doi.org/10.1111/exd.13460
        • Jones F.W.
        Tension lines, cleavage lines and hair tracts in man.
        J. Anat. 1941; 75: 248-250
        • Wong V.W.
        • Akaishi S.
        • Longaker M.T.
        • Gurtner G.C.
        Pushing back: wound mechanotransduction in repair and regeneration.
        J. Invest. Dermatol. 2011; 131: 2186-2196
        • Yazdani Abyaneh M.A.
        • Griffith R.
        • Falto-Aizpurua L.
        • Nouri K.
        Famous lines in history: langer lines.
        JAMA Dermatol. 2014; 150: 1087
        • Pawlaczyk M.
        • Lelonkiewicz M.
        • Wieczorowski M.
        Age-dependent biomechanical properties of the skin.
        Postepy Dermatol. Alergol. 2013; 30: 302-306
        • chun W.
        • Sherman V.R.
        • Gludovatz B.
        • Schaible E.
        • Stewart P.
        • Ritchie R.O.
        • Meyers M.A.
        On the tear resistance of skin.
        Nat. Commun. 2015; 6: 6649
        • Kular J.K.
        • Basu S.
        • Sharma R.I.
        The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering.
        J. Tissue Eng. 2014; 5 (2041731414557112)
        • Humphrey J.D.
        • Dufresne E.R.
        • Schwartz M.A.
        Mechanotransduction and extracellular matrix homeostasis.
        Nat. Rev. Mol. Cell Biol. 2014; 15: 802-812
        • Eckes B.
        • Nischt R.
        • Krieg T.
        Cell-matrix interactions in dermal repair and scarring.
        Fibrogenesis Tissue Repair. 2010; 3: 4
        • Xue M.
        • Jackson C.J.
        Extracellular matrix reorganization during wound healing and its impact on abnormal scarring.
        Adv. Wound Care (New Rochelle). 2015; 4: 119-136
        • Clark J.A.
        • Cheng J.C.
        • Leung K.S.
        Mechanical properties of normal skin and hypertrophic scars.
        Burns. 1996; 22: 443-446
        • Linares H.A.
        • Kischer C.W.
        • Dobrkovsky M.
        • Larson D.L.
        The histiotypic organization of the hypertrophic scar in humans.
        J. Invest. Dermatol. 1972; 59: 323-331
        • van Zuijlen P.P.
        • Ruurda J.J.
        • van Veen H.A.
        • van Marle J.
        • van Trier A.J.
        • Groenevelt F.
        • Kreis R.W.
        • Middelkoop E.
        Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints.
        Burns. 2003; 29: 423-431
        • Yates C.C.
        • Hebda P.
        • Wells A.
        Skin wound healing and scarring: fetal wounds and regenerative restitution.
        Birth Defects Res. C Embryo Today. 2012; 96: 325-333
        • Evans N.D.
        • Oreffo R.O.
        • Healy E.
        • Thurner P.J.
        • Man Y.H.
        Epithelial mechanobiology, skin wound healing, and the stem cell niche.
        J. Mech. Behav. Biomed. Mater. 2013; 28: 397-409
        • Herskovitz I.
        • Hughes O.B.
        • Macquhae F.
        • Rakosi A.
        • Kirsner R.
        Epidermal skin grafting.
        Int. Wound J. 2016; 13: 52-56
        • Ogawa R.
        Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis.
        Int. J. Mol. Sci. 2017; 18
        • Eder D.
        • Aegerter C.
        • Basler K.
        Forces controlling organ growth and size.
        Mech. Dev. 2017; 144: 53-61
        • Ferreira R.R.
        • Vermot J.
        The balancing roles of mechanical forces during left-right patterning and asymmetric morphogenesis.
        Mech. Dev. 2017; 144: 71-80
        • Chin L.
        • Xia Y.
        • Discher D.E.
        • Janmey P.A.
        Mechanotransduction in cancer.
        Curr. Opin. Chem. Eng. 2016; 11: 77-84
        • Mammoto T.
        • Mammoto A.
        • Ingber D.E.
        Mechanobiology and developmental control.
        Annu. Rev. Cell Dev. Biol. 2013; 29: 27-61
        • Rosinczuk J.
        • Taradaj J.
        • Dymarek R.
        • Sopel M.
        Mechanoregulation of wound healing and skin homeostasis.
        BioMed Res. Int. 2016; 2016: 3943481
        • Tarbell J.M.
        • Pahakis M.Y.
        Mechanotransduction and the glycocalyx.
        J. Intern. Med. 2006; 259: 339-350
        • Yeh Y.C.
        • Ling J.Y.
        • Chen W.C.
        • Lin H.H.
        • Tang M.J.
        Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin.
        Sci. Rep. 2017; 7: 15008
        • Hsu C.K.
        • Lin H.H.
        • Harn H.I.
        • Ogawa R.
        • Wang Y.K.
        • Ho Y.T.
        • Chen W.R.
        • Lee Y.C.
        • Lee J.Y.
        • Shieh S.J.
        • Cheng C.M.
        • McGrath J.A.
        • Tang M.J.
        Caveolin-1 controls hyperresponsiveness to mechanical stimuli and fibrogenesis-associated RUNX2 activation in keloid fibroblasts.
        J. Invest. Dermatol. 2018; 138: 208-218
        • Wei W.C.
        • Lin H.H.
        • Shen M.R.
        • Tang M.J.
        Mechanosensing machinery for cells under low substratum rigidity.
        Am. J. Physiol. Cell Physiol. 2008; 295: C1579-89
        • Zhang H.
        • Landmann F.
        • Zahreddine H.
        • Rodriguez D.
        • Koch M.
        • Labouesse M.
        A tension-induced mechanotransduction pathway promotes epithelial morphogenesis.
        Nature. 2011; 471: 99-103
        • Wang J.
        • Zhang Y.
        • Zhang N.
        • Wang C.
        • Herrler T.
        • Li Q.
        An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs.
        Cell. Mol. Life Sci. 2015; 72: 2091-2106
        • Ladoux B.
        • Nelson W.J.
        • Yan J.
        • Mege R.M.
        The mechanotransduction machinery at work at adherens junctions.
        Integr. Biol. (Camb.). 2015; 7: 1109-1119
        • Michaelson J.E.
        • Huang H.
        Cell-cell junctional proteins in cardiovascular mechanotransduction.
        Ann. Biomed. Eng. 2012; 40: 568-577
        • Kippenberger S.
        • Kleemann J.
        • Meissner M.
        • Steinhorst K.
        • Muller J.
        • Zouboulis C.C.
        • Kaufmann R.
        • Zoller N.
        Activation of PKB/Akt and p44/42 by mechanical stretch utilizes desmosomal structures and the keratin filament.
        J. Dermatol. Sci. 2018; 89: 241-247
        • Asparuhova M.B.
        • Gelman L.
        • Chiquet M.
        Role of the actin cytoskeleton in tuning cellular responses to external mechanical stress.
        Scand. J. Med. Sci. Sports. 2009; 19: 490-499
        • Sanghvi-Shah R.
        • Weber G.F.
        Intermediate filaments at the junction of mechanotransduction, migration, and development.
        Front. Cell Dev. Biol. 2017; 5: 81
        • Paszek M.J.
        • Zahir N.
        • Johnson K.R.
        • Lakins J.N.
        • Rozenberg G.I.
        • Gefen A.
        • Reinhart-King C.A.
        • Margulies S.S.
        • Dembo M.
        • Boettiger D.
        • Hammer D.A.
        • Weaver V.M.
        Tensional homeostasis and the malignant phenotype.
        Cancer Cell. 2005; 8: 241-254
        • Sprecher E.
        Epidermolysis bullosa simplex.
        Dermatol. Clin. 2010; 28: 23-32
        • Fine J.D.
        • Bruckner-Tuderman L.
        • Eady R.A.
        • Bauer E.A.
        • Bauer J.W.
        • Has C.
        • Heagerty A.
        • Hintner H.
        • Hovnanian A.
        • Jonkman M.F.
        • Leigh I.
        • Marinkovich M.P.
        • Martinez A.E.
        • McGrath J.A.
        • Mellerio J.E.
        • Moss C.
        • Murrell D.F.
        • Shimizu H.
        • Uitto J.
        • Woodley D.
        • Zambruno G.
        Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification.
        J. Am. Acad. Dermatol. 2014; 70: 1103-1126
        • Bolling M.C.
        • Lemmink H.H.
        • Jansen G.H.
        • Jonkman M.F.
        Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75% of the patients.
        Br. J. Dermatol. 2011; 164: 637-644
        • Turcan I.
        • Jonkman M.F.
        Blistering disease: insight from the hemidesmosome and other components of the dermal-epidermal junction.
        Cell Tissue Res. 2015; 360: 545-569
        • Bornslaeger E.A.
        • Godsel L.M.
        • Corcoran C.M.
        • Park J.K.
        • Hatzfeld M.
        • Kowalczyk A.P.
        • Green K.J.
        Plakophilin 1 interferes with plakoglobin binding to desmoplakin, yet together with plakoglobin promotes clustering of desmosomal plaque complexes at cell-cell borders.
        J. Cell Sci. 2001; 114: 727-738
        • McGrath J.A.
        • Mellerio J.E.
        Ectodermal dysplasia-skin fragility syndrome.
        Dermatol. Clin. 2010; 28: 125-129
        • Singer A.J.
        • Clark R.A.
        Cutaneous wound healing.
        N. Engl. J. Med. 1999; 341: 738-746
        • Hu S.C.
        • Lan C.E.
        High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing.
        J. Dermatol. Sci. 2016; 84: 121-127
        • Wong V.W.
        • Longaker M.T.
        • Gurtner G.C.
        Soft tissue mechanotransduction in wound healing and fibrosis.
        Semin. Cell Dev. Biol. 2012; 23: 981-986
        • Horigome T.
        • Takumi S.
        • Shirai K.
        • Kido T.
        • Hagiwara-Chatani N.
        • Nakashima A.
        • Adachi N.
        • Yano H.
        • Hirai Y.
        Sulfated glycosaminoglycans and non-classically secreted proteins, basic FGF and epimorphin, coordinately regulate TGF-beta-induced cell behaviors of human scar dermal fibroblasts.
        J. Dermatol. Sci. 2017; 86: 132-141
        • Ingber D.E.
        • Wang N.
        • Stamenovic D.
        Tensegrity, cellular biophysics, and the mechanics of living systems.
        Rep. Prog. Phys. 2014; 77: 046603
        • Aarabi S.
        • Bhatt K.A.
        • Shi Y.
        • Paterno J.
        • Chang E.I.
        • Loh S.A.
        • Holmes J.W.
        • Longaker M.T.
        • Yee H.
        • Gurtner G.C.
        Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis.
        FASEB J. 2007; 21: 3250-3261
        • Wong V.W.
        • Rustad K.C.
        • Akaishi S.
        • Sorkin M.
        • Glotzbach J.P.
        • Januszyk M.
        • Nelson E.R.
        • Levi K.
        • Paterno J.
        • Vial I.N.
        • Kuang A.A.
        • Longaker M.T.
        • Gurtner G.C.
        Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling.
        Nat. Med. 2012; 18: 148-152
        • Ogawa R.
        • Okai K.
        • Tokumura F.
        • Mori K.
        • Ohmori Y.
        • Huang C.
        • Hyakusoku H.
        • Akaishi S.
        The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation.
        Wound Repair Regen. 2012; 20: 149-157
        • Huang C.
        • Akaishi S.
        • Ogawa R.
        Mechanosignaling pathways in cutaneous scarring.
        Arch. Dermatol. Res. 2012; 304: 589-597
        • Akaishi S.
        • Akimoto M.
        • Ogawa R.
        • Hyakusoku H.
        The relationship between keloid growth pattern and stretching tension: visual analysis using the finite element method.
        Ann. Plast. Surg. 2008; 60: 445-451
        • Bullard K.M.
        • Longaker M.T.
        • Lorenz H.P.
        Fetal wound healing: current biology.
        World J. Surg. 2003; 27: 54-61
        • Mizell M.
        Limb regeneration: induction in the newborn opossum.
        Science. 1968; 161: 283-286
        • Allan C.H.
        • Fleckman P.
        • Fernandes R.J.
        • Hager B.
        • James J.
        • Wisecarver Z.
        • Satterstrom F.K.
        • Gutierrez A.
        • Norman A.
        • Pirrone A.
        • Underwood R.A.
        • Rubin B.P.
        • Zhang M.
        • Ramay H.R.
        • Clark J.M.
        Tissue response and Msx1 expression after human fetal digit tip amputation in vitro.
        Wound Repair Regen. 2006; 14: 398-404
        • Takeo M.
        • Chou W.C.
        • Sun Q.
        • Lee W.
        • Rabbani P.
        • Loomis C.
        • Taketo M.M.
        • Ito M.
        Wnt activation in nail epithelium couples nail growth to digit regeneration.
        Nature. 2013; 499: 228-232
        • Illingworth C.M.
        Trapped fingers and amputated finger tips in children.
        J. Pediatr. Surg. 1974; 9: 853-858
        • Gurtner G.C.
        • Callaghan M.J.
        • Longaker M.T.
        Progress and potential for regenerative medicine.
        Annu. Rev. Med. 2007; 58: 299-312
        • Levy V.
        • Lindon C.
        • Harfe B.D.
        • Morgan B.A.
        Distinct stem cell populations regenerate the follicle and interfollicular epidermis.
        Dev. Cell. 2005; 9: 855-861
        • Ito M.
        • Yang Z.
        • Andl T.
        • Cui C.
        • Kim N.
        • Millar S.E.
        • Cotsarelis G.
        Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.
        Nature. 2007; 447: 316-320
        • Breedis C.
        Regeneration of hair follicles and sebaceous glands from the epithelium of scars in the rabbit.
        Cancer Res. 1954; 14: 575-579
        • Giangreco A.
        • Jensen K.B.
        • Takai Y.
        • Miyoshi J.
        • Watt F.M.
        Necl2 regulates epidermal adhesion and wound repair.
        Development. 2009; 136: 3505-3514
        • Snippert H.J.
        • Haegebarth A.
        • Kasper M.
        • Jaks V.
        • van Es J.H.
        • Barker N.
        • van de Wetering M.
        • van den Born M.
        • Begthel H.
        • Vries R.G.
        • Stange D.E.
        • Toftgard R.
        • Clevers H.
        Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin.
        Science. 2010; 327: 1385-1389
        • Brownell I.
        • Guevara E.
        • Bai C.B.
        • Loomis C.A.
        • Joyner A.L.
        Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells.
        Cell Stem Cell. 2011; 8: 552-565
        • Wang X.
        • Hsi T.C.
        • Guerrero-Juarez C.F.
        • Pham K.
        • Cho K.
        • McCusker C.D.
        • Monuki E.S.
        • Cho K.W.
        • Gay D.L.
        • Plikus M.V.
        Principles and mechanisms of regeneration in the mouse model for wound-induced hair follicle neogenesis.
        Regeneration (Oxford). 2015; 2: 169-181
        • Yuriguchi M.
        • Aoki H.
        • Taguchi N.
        • Kunisada T.
        Pigmentation of regenerated hairs after wounding.
        J. Dermatol. Sci. 2016; 84: 80-87
        • Vining K.H.
        • Mooney D.J.
        Mechanical forces direct stem cell behaviour in development and regeneration.
        Nat. Rev. Mol. Cell Biol. 2017; 18: 728-742
        • Rinkevich Y.
        • Walmsley G.G.
        • Hu M.S.
        • Maan Z.N.
        • Newman A.M.
        • Drukker M.
        • Januszyk M.
        • Krampitz G.W.
        • Gurtner G.C.
        • Lorenz H.P.
        • Weissman I.L.
        • Longaker M.T.
        Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential.
        Science. 2015; 348: aaa2151
        • Seifert A.W.
        • Kiama S.G.
        • Seifert M.G.
        • Goheen J.R.
        • Palmer T.M.
        • Maden M.
        Skin shedding and tissue regeneration in African spiny mice (Acomys).
        Nature. 2012; 489: 561-565
        • Yang C.C.
        • Cotsarelis G.
        Review of hair follicle dermal cells.
        J. Dermatol. Sci. 2010; 57: 2-11
        • Shyer A.E.
        • Rodrigues A.R.
        • Schroeder G.G.
        • Kassianidou E.
        • Kumar S.
        • Harland R.M.
        Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin.
        Science. 2017; 357: 811-815
        • Essayem S.
        • Kovacic-Milivojevic B.
        • Baumbusch C.
        • McDonagh S.
        • Dolganov G.
        • Howerton K.
        • Larocque N.
        • Mauro T.
        • Ramirez A.
        • Ramos D.M.
        • Fisher S.J.
        • Jorcano J.L.
        • Beggs H.E.
        • Reichardt L.F.
        • Ilic D.
        Hair cycle and wound healing in mice with a keratinocyte-restricted deletion of FAK.
        Oncogene. 2006; 25: 1081-1089
        • Brakebusch C.
        • Grose R.
        • Quondamatteo F.
        • Ramirez A.
        • Jorcano J.L.
        • Pirro A.
        • Svensson M.
        • Herken R.
        • Sasaki T.
        • Timpl R.
        • Werner S.
        • Fassler R.
        Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes.
        EMBO J. 2000; 19: 3990-4003
        • Xie Y.
        • McElwee K.J.
        • Owen G.R.
        • Hakkinen L.
        • Larjava H.S.
        Integrin beta6-deficient mice show enhanced keratinocyte proliferation and retarded hair follicle regression after depilation.
        J. Invest. Dermatol. 2012; 132: 547-555
        • Bodo E.
        • Biro T.
        • Telek A.
        • Czifra G.
        • Griger Z.
        • Toth B.I.
        • Mescalchin A.
        • Ito T.
        • Bettermann A.
        • Kovacs L.
        • Paus R.
        A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control.
        Am. J. Pathol. 2005; 166: 985-998
        • Koyama T.
        • Kobayashi K.
        • Hama T.
        • Murakami K.
        • Ogawa R.
        Standardized scalp massage results in increased hair thickness by inducing stretching forces to dermal papilla cells in the subcutaneous tissue.
        Eplasty. 2016; 16: e8
        • Fujiwara H.
        • Ferreira M.
        • Donati G.
        • Marciano D.K.
        • Linton J.M.
        • Sato Y.
        • Hartner A.
        • Sekiguchi K.
        • Reichardt L.F.
        • Watt F.M.
        The basement membrane of hair follicle stem cells is a muscle cell niche.
        Cell. 2011; 144: 577-589
        • Yang C.C.
        • Chung P.L.
        • Lin L.Y.
        • Hughes M.W.
        • Tsai Y.S.
        Higher plasma leptin is associated with higher risk of androgenetic alopecia in men.
        Exp. Dermatol. 2017; 26: 524-526
        • Yang C.C.
        • Hsieh F.N.
        • Lin L.Y.
        • Hsu C.K.
        • Sheu H.M.
        • Chen W.
        Higher body mass index is associated with greater severity of alopecia in men with male-pattern androgenetic alopecia in Taiwan: a cross-sectional study.
        J. Am. Acad. Dermatol. 2014; 70 (e1): 297-302
        • Tellez-Segura R.
        Involvement of mechanical stress in androgenetic alopecia.
        Int. J. Trichol. 2015; 7: 95-99
        • Freund B.J.
        • Schwartz M.
        Treatment of male pattern baldness with botulinum toxin: a pilot study.
        Plast. Reconstr. Surg. 2010; 126: 246e-248e
        • El-Domyati M.
        • Attia S.
        • Saleh F.
        • Abdel-Wahab H.
        Androgenetic alopecia in males: a histopathological and ultrastructural study.
        J. Cosmet. Dermatol. 2009; 8: 83-91
        • Torkamani N.
        • Rufaut N.
        • Jones L.
        • Sinclair R.
        The arrector pili muscle, the bridge between the follicular stem cell niche and the interfollicular epidermis.
        Anat. Sci. Int. 2017; 92: 151-158
        • Sheen Y.S.
        • Liao Y.H.
        • Lin M.H.
        • Chen J.S.
        • Liau J.Y.
        • Tseng Y.J.
        • Lee C.H.
        • Chang Y.L.
        • Chu C.Y.
        A clinicopathological analysis of 153 acral melanomas and the relevance of mechanical stress.
        Sci. Rep. 2017; 7: 5564
        • Jung H.J.
        • Kweon S.S.
        • Lee J.B.
        • Lee S.C.
        • Yun S.J.
        A clinicopathologic analysis of 177 acral melanomas in Koreans: relevance of spreading pattern and physical stress.
        JAMA Dermatol. 2013; 149: 1281-1288
        • Minagawa A.
        • Omodaka T.
        • Okuyama R.
        Melanomas and mechanical stress points on the plantar surface of the foot.
        N. Engl. J. Med. 2016; 374: 2404-2406
        • Hsu C.K.
        • Wang S.P.
        • Lee J.Y.
        • McGrath J.A.
        Treatment of hereditary epidermolysis bullosa: updates and future prospects.
        Am. J. Clin. Dermatol. 2014; 15: 1-6
        • Guerra L.
        • Odorisio T.
        • Zambruno G.
        • Castiglia D.
        Stromal microenvironment in type VII collagen-deficient skin: the ground for squamous cell carcinoma development.
        Matrix Biol. 2017; 63: 1-10
        • Mittapalli V.R.
        • Madl J.
        • Loffek S.
        • Kiritsi D.
        • Kern J.S.
        • Romer W.
        • Nystrom A.
        • Bruckner-Tuderman L.
        Injury-Driven stiffening of the dermis expedites skin carcinoma progression.
        Cancer Res. 2016; 76: 940-951
        • Uitto J.
        • Has C.
        • Vahidnezhad H.
        • Youssefian L.
        • Bruckner-Tuderman L.
        Molecular pathology of the basement membrane zone in heritable blistering diseases: the paradigm of epidermolysis bullosa.
        Matrix Biol. 2017; 57–58: 76-85

      Biography

      Chao-Chun Yang, M.D., Ph.D., is an Associate Professor in the Department of Dermatology, National Cheng Kung University, Tainan, Taiwan. He obtained his M.D. and Ph.D. degree from National Cheng Kung University and continuously served as a clinician in National Cheng Kung University Hospital. He did his postdoctoral research during 2008–2010 in the Department of Dermatology, University of Pennsylvania, USA, under the instruction of Dr. George Cotsarelis. Dr. Yang studied on hair reconstitution assays and the interaction between dermal adipose tissue and hair follicles. His recent focus is mechanobiology in the hair regeneration and alopecia.