Advertisement

Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light

      Highlights

      • Accurate modeling of artificial visible light emitted by electronic devices.
      • Strong transcriptome response in dermal fibroblasts.
      • Fragmented mitochondrial network in dermal fibroblasts.
      • Disorganized actin cytoskeleton in dermal fibroblasts.
      • Artificial visible light is an additional source of harmful environmental stress.

      Abstract

      Background

      Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known.

      Objective

      The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts.

      Methods

      The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured.

      Results

      We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the “mitochondria” and “integrin signaling” categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts.

      Conclusion

      Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Frederick J.E.
        • Snell H.E.
        • Haywood E.K.
        Solar ultraviolet radiation at the earth's surface.
        Photochem. Photobiol. 1989; 50: 443-450
        • Pathak M.A.
        • Riley F.J.
        • Fitzpatrick T.B.
        • Curwen W.L.
        Melanin formation in human skin induced by long-wave ultra-violet and visible light.
        Nature. 1962; 193: 148-150
        • Lohan S.B.
        • Muller R.
        • Albrecht S.
        • Mink K.
        • Tscherch K.
        • Ismaeel F.
        • Lademann J.
        • Rohn S.
        • Meinke M.C.
        Free radicals induced by sunlight in different spectral regions – in vivo versus ex vivo study.
        Exp. Dermatol. 2016; 25: 380-385
        • Zastrow L.
        • Groth N.
        • Klein F.
        • Kockott D.
        • Lademann J.
        • Renneberg R.
        • Ferrero L.
        The missing link–light-induced (280–1,600 nm) free radical formation in human skin.
        Skin Pharmacol. Physiol. 2009; 22: 31-44
        • Pflaum M.
        • Kielbassa C.
        • Garmyn M.
        • Epe B.
        Oxidative DNA damage induced by visible light in mammalian cells: extent, inhibition by antioxidants and genotoxic effects.
        Mutat. Res. 1998; 408: 137-146
        • Hoffmann-Dörr S.
        • Greinert R.
        • Volkmer B.
        • Epe B.
        Visible light (395 nm) causes micronuclei formation in mammalian cells without generation of cyclobutane pyrimidine dimers.
        Mutat. Res. 2005; 572: 142-149
        • Kim H.-j.
        • Choi M.S.
        • Bae I.-H.
        • Jung J.-y.
        • Son E.D.
        • Lee T.R.
        • Shin D.W.
        Short wavelength visible light suppresses innate immunity-Related responses by modulating protein S-nitrosylation in keratinocytes.
        J. Invest. Dermatol. 2016; 136: 727-731
        • Liebel F.
        • Kaur S.
        • Ruvolo E.
        • Kollias N.
        • Southall M.D.
        Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.
        J. Invest. Dermatol. 2012; 132: 1901-1907
        • Becker D.
        • Langer E.
        • Seemann M.
        • Seemann G.
        • Fell I.
        • Saloga J.
        • Grabbe S.
        • von Stebut E.
        Clinical efficacy of blue light full body irradiation as treatment option for severe atopic dermatitis.
        PLoS One. 2011; 6: e20566
        • Oplander C.
        • Hidding S.
        • Werners F.B.
        • Born M.
        • Pallua N.
        • Suschek C.V.
        Effects of blue light irradiation on human dermal fibroblasts.
        J. Photochem. Photobiol. B. 2011; 103: 118-125
        • Liebmann J.
        • Born M.
        • Kolb-Bachofen V.
        Blue-light irradiation regulates proliferation and differentiation in human skin cells.
        J. Invest. Dermatol. 2010; 130: 259-269
        • Lee J.-B.
        • Bae S.H.
        • Moon K.R.
        • Na E.Y.
        • Yun S.J.
        • Lee S.-C.
        Light-emitting diodes downregulate cathelicidin, kallikrein and toll-like receptor 2 expressions in keratinocytes and rosacea-like mouse skin.
        Exp. Dermatol. 2016; 25: 956-961
        • de Sousa A.P.C.
        • Santos J.N.
        • Dos Reis Jr., J.A.
        • Ramos T.A.
        • de Souza J.
        • Cangussu M.C.T.
        • Pinheiro A.L.B.
        Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model.
        Photomed. Laser Surg. 2010; 28: 547-552
        • Fushimi T.
        • Inui S.
        • Nakajima T.
        • Ogasawara M.
        • Hosokawa K.
        • Itami S.
        Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo.
        Wound Repair Regen. 2012; 20: 226-235
        • Bennet D.
        • Viswanath B.
        • Kim S.
        • An J.H.
        An ultra-sensitive biophysical risk assessment of light effect on skin cells.
        Oncotarget. 2017; 8: 47861-47875
        • Conlan M.J.
        • Rapley J.W.
        • Cobb C.M.
        Biostimulation of wound healing by low-energy laser irradiation. A review.
        J. Clin. Periodontol. 1996; 23: 492-496
        • Schindl A.
        • Schindl M.
        • Pernerstorfer-Schön H.
        • Schindl L.
        Low-intensity laser therapy: a review.
        J. Invest. Med. 2000; 48: 312-326
        • Vinck E.M.
        • Cagnie B.J.
        • Cornelissen M.J.
        • Declercq H.A.
        • Cambier D.C.
        Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation.
        Lasers Med. Sci. 2003; 18: 95-99
        • Vinck E.M.
        • Cagnie B.J.
        • Cornelissen M.J.
        • Declercq H.A.
        • Cambier D.C.
        Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level.
        Photomed. Laser Surg. 2005; 23: 167-171
        • Karu T.I.
        • Pyatibrat L.V.
        • Kalendo G.S.
        Photobiological modulation of cell attachment via cytochrome c oxidase.
        Photochem. Photobiol. Sci. 2004; 3: 211-216
        • Zhang Y.
        • Song S.
        • Fong C.-C.
        • Tsang C.-H.
        • Yang Z.
        • Yang M.
        cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light.
        J. Invest. Dermatol. 2003; 120: 849-857
        • Chabert R.
        • Fouque L.
        • Pinacolo S.
        • Garcia-Gimenez N.
        • Bonnans M.
        • Cucumel K.
        • Domloge N.
        Evaluation of light-emitting diodes (LED) effect on skin biology (in vitro study).
        Skin Res.Technol. 2015; 21: 426-436
        • Nakashima Y.
        • Ohta S.
        • Wolf A.M.
        Blue light-induced oxidative stress in live skin.
        Free Radic. Biol. Med. 2017; 108: 300-310
      1. PlanoEye Associates, Blue Light/High-Energy Visible (HEV) Light and Your Eyes, https://www.planoeye.com/your-eye-health/computer-eyestrain/blue-lighthigh-energy-visible-hev-light-and-your-eyes/.

      2. BlueLightExposed, #bluelightexposed, http://www.bluelightexposed.com/#bluelightexposed.

      3. The Vision Council, Digiteyezed: The Daily Impact of Digital Screens on the Eye Health of Americans. The Vision Council Reports on Digital Eye Strain, 2012 & 2013.

        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative C(T) method.
        Nat. Protoc. 2008; 3: 1101-1108
        • Okamoto K.
        • Shaw J.M.
        Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes.
        Annu. Rev. Genet. 2005; 39: 503-536
        • Quan C.
        • Cho M.K.
        • Perry D.
        • Quan T.
        Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging.
        J. Biomed. Sci. 2015; 22: 62
        • Calles C.
        • Schneider M.
        • Macaluso F.
        • Benesova T.
        • Krutmann J.
        • Schroeder P.
        Infrared A radiation influences the skin fibroblast transcriptome: mechanisms and consequences.
        J. Invest. Dermatol. 2010; 130: 1524-1536
        • Sun X.
        • Kim A.
        • Nakatani M.
        • Shen Y.
        • Liu L.
        Distinctive molecular responses to ultraviolet radiation between keratinocytes and melanocytes.
        Exp. Dermatol. 2016; 25: 708-713
        • Hou J.
        • Wang F.
        • Kong P.
        • Yu P.K.N.
        • Wang H.
        • Han W.
        Gene profiling characteristics of radioadaptive response in AG01522 normal human fibroblasts.
        PLoS One. 2015; 10: e0123316
        • Kalanxhi E.
        • Dahle J.
        Genome-wide microarray analysis of human fibroblasts in response to γ radiation and the radiation-induced bystander effect.
        Radiat. Res. 2012; 177: 35-43
        • Weissmann R.
        • Kacprowski T.
        • Peper M.
        • Esche J.
        • Jensen L.R.
        • van Diepen L.
        • Port M.
        • Kuss A.W.
        • Scherthan H.
        Transcriptome alterations In X-irradiated human gingiva fibroblasts.
        Health Phys. 2016; 111: 75-84
        • Duteil L.
        • Esdaile J.
        • Maubert Y.
        • Cathelineau A.-C.
        • Bouloc A.
        • Queille-Roussel C.
        • Passeron T.
        A method to assess the protective efficacy of sunscreens against visible light-induced pigmentation.
        Photodermatol. Photoimmunol. Photomed. 2017; 33: 260-266
        • Kohli I.
        • Chaowattanapanit S.
        • Mohammad T.F.
        • Nicholson C.L.
        • Fatima S.
        • Jacobsen G.
        • Kollias N.
        • Lim H.W.
        • Hamzavi I.H.
        Synergistic effects of long wavelength ultraviolet A1 and visible light on pigmentation and erythema.
        Br. J. Dermatol. 2017; ([Epub ahead of print])https://doi.org/10.1111/bjd.15940
        • Janmey P.A.
        Mechanical properties of cytoskeletal polymers.
        Curr. Opin. Cell Biol. 1991; 3: 4-11
        • Rotsch C.
        • Radmacher M.
        Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study.
        Biophys. J. 2000; 78: 520-535
        • Delvoye P.
        • Wiliquet P.
        • Levêque J.L.
        • Nusgens B.V.
        • Lapière C.M.
        Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel.
        J. Invest. Dermatol. 1991; 97: 898-902
        • Walpita D.
        • Hay E.
        Studying actin-dependent processes in tissue culture.
        Nat. Rev. Mol. Cell Biol. 2002; 3: 137-141
        • Petroll W.M.
        Dynamic assessment of cell-matrix mechanical interactions in three-dimensional culture.
        Methods Mol. Biol. (Clifton, N.J.). 2007; 370: 67-82
        • Schulze C.
        • Wetzel F.
        • Kueper T.
        • Malsen A.
        • Muhr G.
        • Jaspers S.
        • Blatt T.
        • Wittern K.-P.
        • Wenck H.
        • Käs J.A.
        Stiffening of human skin fibroblasts with age.
        Biophys. J. 2010; 99: 2434-2442
        • Wang P.
        • Wang P.
        • Liu B.
        • Zhao J.
        • Pang Q.
        • Agrawal S.G.
        • Jia L.
        • Liu F.-T.
        Dynamin-related protein Drp1 is required for Bax translocation to mitochondria in response to irradiation-induced apoptosis.
        Oncotarget. 2015; 6: 22598-22612
        • Zhang Z.
        • Liu L.
        • Wu S.
        • Xing D.
        • Drp1 Mff
        Fis1, and MiD51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis.
        FASEB J. 2016; 30: 466-476
        • Hu W.-P.
        • Wang J.-J.
        • Yu C.-L.
        • Lan C.-C.E.
        • Chen G.-S.
        • Yu H.-S.
        Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria.
        J. Invest. Dermatol. 2007; 127: 2048-2057
        • Hawkins D.H.
        • Abrahamse H.
        Time-dependent responses of wounded human skin fibroblasts following phototherapy.
        J. Photochem. Photobiol. B Biol. 2007; 88: 147-155
        • Boffoli D.
        • Scacco S.C.
        • Vergari R.
        • Solarino G.
        • Santacroce G.
        • Papa S.
        Decline with age of the respiratory chain activity in human skeletal muscle.
        Biochim. Biophys. Acta. 1994; 1226: 73-82
        • Capel F.
        • Rimbert V.
        • Lioger D.
        • Diot A.
        • Rousset P.
        • Mirand P.P.
        • Boirie Y.
        • Morio B.
        • Mosoni L.
        Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved.
        Mech. Ageing Dev. 2005; 126: 505-511
        • Bowman A.
        • Birch-Machin M.A.
        Age-dependent decrease of mitochondrial complex II activity in human skin fibroblasts.
        J. Invest. Dermatol. 2016; 136: 912-919