Advertisement
Original Article| Volume 102, ISSUE 3, P167-176, June 2021

Download started.

Ok

Ultra high-frequency ultrasound with seventy-MHz transducer in hair disorders: Development of a novel noninvasive diagnostic methodology

  • Misaki Kinoshita-Ise
    Correspondence
    Corresponding authors at: Department of Dermatology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa Mitaka-shi, Tokyo, 181-8611, Japan.
    Affiliations
    Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

    Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada

    Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
    Search for articles by this author
  • Manabu Ohyama
    Correspondence
    Corresponding authors at: Department of Dermatology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa Mitaka-shi, Tokyo, 181-8611, Japan.
    Affiliations
    Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
    Search for articles by this author
  • Joel M. Ramjist
    Affiliations
    Biophotonics and Bioengineering Laboratory, Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
    Search for articles by this author
  • F. Stuart Foster
    Affiliations
    Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
    Search for articles by this author
  • Victor X.D. Yang
    Affiliations
    Biophotonics and Bioengineering Laboratory, Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada

    Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada

    Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
    Search for articles by this author
  • Muskaan Sachdeva
    Affiliations
    Faculty of Medicine, University of Toronto, Toronto, ON, Canada
    Search for articles by this author
  • Shachar Sade
    Affiliations
    Division of Pathology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
    Search for articles by this author
  • Neil H. Shear
    Affiliations
    Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

    Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
    Search for articles by this author

      Highlights

      • Ultra high-frequency ultrasound (uHFUS) is a new diagnostic modality.
      • uHFUS detects pathological findings which are not observable by other diagnostic tools.
      • uHFUS may facilitate more convenient, prompt, and precise diagnosis of hair disorders.

      Abstract

      Background

      Ultra high-frequency ultrasound (uHFUS) is a recently developed diagnostic technology. Despite its potential usefulness, no study has assessed its advantage in diagnosis and evaluation of hair disorders in comparison with other diagnostic methods.

      Objectives

      To assess the practicability of uHFUS in diagnosing hair disorders and propose a diagnostic methodology.

      Methods

      Ultrasonographic images of scalp and forehead from patients with hair disorders (n = 103) and healthy controls (n = 40) were obtained by uHFUS and analyzed by both descriptive and numerical parameters. Furthermore, the data were compared with trichoscopic and histopathological findings.

      Results

      The pattern of inflammation and fibrosis, hair cycle abnormality, and the findings in subcutis were detected by uHFUS. Significant differences were noted in the numerical parameters associated with the number of hair shafts and follicles, hair diameters and their diversity, and dermal echogenicity in both cicatricial and non-cicatricial hair disorders. Findings in uHFUS were associated with those observed in trichoscopy and scalp biopsy but uHFUS was able to detect pathological findings associated with hair cycle, inflammation, fibrosis, and subcutaneous abnormalities, which are hardly assessable by trichoscopy.

      Conclusion

      The findings of this study highlighted usefulness of uHFUS in diagnosing hair disorders, while overcoming the weaknesses and limitations of other diagnostic tools.

      Abbreviations:

      AA (alopecia areata), AGA (androgenetic alopecia), CCCA (central centrifugal cicatricial alopecia), DC (dissecting cellulitis), FD (folliculitis decalvans), FFA (frontal fibrosing alopecia), FPHL (female pattern hair loss), HF (hair follicle), (u)HFUS ((ultra) high-frequency ultrasound), HS (hair shaft), LPP (lichen planopilaris), SA (senescent alopecia), TE (telogen effluvium)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Miteva M.
        • Tosti A.
        Hair and scalp dermatoscopy.
        J. Am. Acad. Dermatol. 2012; 67: 1040-1048
        • Wortsman X.
        • Calderon P.
        • Castro A.
        Seventy-MHz ultrasound detection of early signs linked to the severity, patterns of keratin fragmentation, and mechanisms of generation of collections and tunnels in hidradenitis suppurativa.
        J. Ultrasound Med. 2020; 39: 845-857
        • Oh B.H.
        • Kim K.H.
        • Chung K.Y.
        Skin imaging using ultrasound imaging, optical coherence tomography, confocal microscopy, and two-photon microscopy in cutaneous oncology.
        Front. Med. (Lausanne). 2019; 6: 274
        • Mikiel D.
        • Polanska A.
        • Zaba R.
        • Adamski Z.
        • Danczak-Pazdrowska A.
        High-frequency ultrasonography of the scalp - Comparison of ultrasound and trichoscopic images in healthy individuals.
        Skin Res. Technol. 2020;
        • Zhang M.
        • Wang R.
        • Wu Y.
        • Jing J.
        • Chen S.
        • Zhang G.
        • Xu B.
        • Liu C.
        • Chen M.
        Micro-ultrasound imaging for accuracy of diagnosis in clinically significant prostate Cancer: a meta-analysis.
        Front. Oncol. 2019; 9: 1368
        • Jakubovic R.
        • Ramjist J.
        • Gupta S.
        • Guha D.
        • Sahgal A.
        • Foster F.S.
        • Yang V.X.D.
        High-frequency micro-ultrasound imaging and optical topographic imaging for spinal surgery: initial experiences.
        Ultrasound Med. Biol. 2018; 44: 2379-2387
        • Wortsman X.
        • Wortsman J.
        • Matsuoka L.
        • Saavedra T.
        • Mardones F.
        • Saavedra D.
        • Guerrero R.
        • Corredoira Y.
        Sonography in pathologies of scalp and hair.
        Br. J. Radiol. 2012; 85: 647-655
        • Wortsman X.
        • Carreno L.
        • Ferreira-Wortsman C.
        • Poniachik R.
        • Pizarro K.
        • Morales C.
        • Calderon P.
        • Castro A.
        Ultrasound characteristics of the hair follicles and tracts, sebaceous glands, montgomery glands, apocrine glands, and arrector pili muscles.
        J. Ultrasound Med. 2019; 38: 1995-2004
        • Kinoshita-Ise M.
        • Foster F.S.
        • Shear N.H.
        Immune checkpoint inhibitor-related alopecia: insight into the pathophysiology utilizing non-invasive diagnostic techniques.
        J. Dermatol. 2019; 46: e152-e153
        • Halani S.
        • Foster F.S.
        • Breslavets M.
        • Shear N.H.
        Ultrasound and infrared-based imaging modalities for diagnosis and management of cutaneous diseases.
        Front. Med. (Lausanne). 2018; 5: 115
        • Moreno-Arrones O.M.
        • Alfageme F.
        • Alegre A.
        • Roustan G.
        Ultrasonographic characteristics of frontal fibrosing alopecia.
        Int. J. Trichology. 2019; 11: 183-184
        • El-Zawahry B.M.
        • El Hanafy M.
        • Bassiouny D.A.
        • Fawzy M.M.
        • Abdel-Mageed Badawy M.
        • El-Khateeb E.M.
        In vivo visualization of hair follicles by ultrasound biomicroscopy in alopecia areata and its correlation with histopathology.
        Acta Dermatovenerol. Croat. 2015; 23: 12-18
        • Cataldo-Cerda K.
        • Wortsman X.
        Dissecting cellulitis of the scalp early diagnosed by color doppler ultrasound.
        Int. J. Trichology. 2017; 9: 147-148
        • Almuhanna N.
        • Wortsman X.
        • Wohlmuth-Wieser I.
        • Kinoshita-Ise M.
        • Alhusayen R.
        Overview of ultrasound imaging applications in dermatology.
        J. Cutan. Med. Surg. 2021; 1203475421999326
        • Inui S.
        Trichoscopy for common hair loss diseases: algorithmic method for diagnosis.
        J. Dermatol. 2011; 38: 71-75
        • Waskiel A.
        • Rakowska A.
        • Sikora M.
        • Olszewska M.
        • Rudnicka L.
        Trichoscopy of alopecia areata: an update.
        J. Dermatol. 2018; 45: 692-700
        • Mathur M.
        • Acharya P.
        Trichoscopy of primary cicatricial alopecias: an updated review.
        J. Eur. Acad. Dermatol. Venereol. 2020; 34: 473-484
        • Watanabe-Okada E.
        • Amagai M.
        • Ohyama M.
        Histopathological investigation of clinically non-affected perilesional scalp in alopecias detected unexpected spread of disease activities.
        J. Dermatol. 2014; 41: 802-807
        • Sperling L.C.
        • Cowper S.
        • Knopp E.
        An Atlas of Hair Pathology with Clinical Correlations.
        2012
        • Childs J.M.
        • Sperling L.C.
        Histopathology of scarring and nonscarring hair loss.
        Dermatol. Clin. 2013; 31: 43-56
        • Whiting D.A.
        How real is senescent alopecia? A histopathologic approach.
        Clin. Dermatol. 2011; 29: 49-53
        • Harries M.J.
        • Jimenez F.
        • Izeta A.
        • Hardman J.
        • Panicker S.P.
        • Poblet E.
        • Paus R.
        Lichen planopilaris and frontal fibrosing alopecia as model epithelial stem cell diseases.
        Trends Mol. Med. 2018; 24: 435-448