Advertisement
Original Article| Volume 103, ISSUE 1, P16-24, July 2021

A natural compound harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway

  • Chi-Hyun Park
    Affiliations
    Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea

    Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

    Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
    Search for articles by this author
  • Goeun Kim
    Affiliations
    Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea

    Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

    Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea

    Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
    Search for articles by this author
  • Yuri Lee
    Affiliations
    Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea

    Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

    Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea

    Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
    Search for articles by this author
  • Haesoo Kim
    Affiliations
    Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea

    Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

    Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea

    Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
    Search for articles by this author
  • Min Ji Song
    Affiliations
    Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea

    Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

    Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea

    Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
    Search for articles by this author
  • Dong Hun Lee
    Affiliations
    Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea

    Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

    Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea

    Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
    Search for articles by this author
  • Jin Ho Chung
    Correspondence
    Corresponding author at: Department of Dermatology, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, Republic of Korea.
    Affiliations
    Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea

    Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

    Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea

    Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea

    Institute on Aging, Seoul National University, Seoul, Republic of Korea
    Search for articles by this author

      Highlights

      • A natural compound harmine decreased melanin synthesis and tyrosinase expression in human MNT-1 melanoma cells and human primary melanocytes.
      • Melanin synthesis was reduced by inhibition of DYRK1A, a harmine target, and enhanced by knockdown of NFATC3, a potential DYRK1A target.
      • Harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway.

      Abstract

      Background

      Melanin plays important roles in determining human skin color and protecting human skin cells against harmful ultraviolet light. However, abnormal hyperpigmentation in some areas of the skin may become aesthetically unpleasing, resulting in the need for effective agents or methods to regulate undesirable hyperpigmentation.

      Objective

      We investigated the effect of harmine, a natural harmala alkaloid belonging to the beta-carboline family, on melanin synthesis and further explored the signaling pathways involved in its mechanism of action.

      Methods

      Human MNT-1 melanoma cells and human primary melanocytes were treated with harmine, chemical inhibitors, small interfering RNAs, or mammalian expression vectors. Cell viability, melanin content, and expression of various target molecules were assessed.

      Results

      Harmine decreased melanin synthesis and tyrosinase expression in human MNT-1 melanoma cells. Inhibition of DYRK1A, a harmine target, decreased melanin synthesis and tyrosinase expression. Further studies revealed that nuclear translocation of NFATC3, a potential DYRK1A substrate, was induced via the harmine/DYRK1A pathway and that NFATC3 knockdown increased melanin synthesis and tyrosinase expression. Suppression of melanin synthesis and tyrosinase expression via the harmine/DYRK1A pathway was significantly attenuated by NFATC3 knockdown. Furthermore, harmine also decreased melanin synthesis and tyrosinase expression through regulation of NFATC3 in human primary melanocytes.

      Conclusion

      Our results indicate that harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway and suggest that the DYRK1A/NFATC3 pathway may be a potential target for the development of depigmenting agents.

      Abbreviations:

      DYRK1A (dual-specificity tyrosine-phosphorylation-regulated kinase 1A), NFATC (nuclear factor of activated T-cells cytoplasmic), MITF (microphthalmia-associated transcription factor), DOPA (beta-3,4-dihydroxyphenylalanine), TYRP-1 (tyrosinase-related protein-1), TYRP-2 (tyrosinase-related protein-2)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maranduca M.A.
        • Branisteanu D.
        • Serban D.N.
        • Branisteanu D.C.
        • Stoleriu G.
        • Manolache N.
        • Serban I.L.
        Synthesis and physiological implications of melanic pigments.
        Oncol. Lett. 2019; 17: 4183-4187
        • Boissy R.E.
        Melanosome transfer to and translocation in the keratinocyte.
        Exp. Dermatol. 2003; 12: 5-12
        • Costin G.E.
        • Hearing V.J.
        Human skin pigmentation: melanocytes modulate skin color in response to stress.
        FASEB J. 2007; 21: 976-994
        • Brenner M.
        • Hearing V.J.
        The protective role of melanin against UV damage in human skin.
        Photochem. Photobiol. 2008; 84: 539-549
        • Gilchrest B.A.
        • Park H.Y.
        • Eller M.S.
        • Yaar M.
        Mechanisms of ultraviolet light-induced pigmentation.
        Photochem. Photobiol. 1996; 63: 1-10
        • Miyamura Y.
        • Coelho S.G.
        • Wolber R.
        • Miller S.A.
        • Wakamatsu K.
        • Zmudzka B.Z.
        • Ito S.
        • Smuda C.
        • Passeron T.
        • Choi W.
        • Batzer J.
        • Yamaguchi Y.
        • Beer J.Z.
        • Hearing V.J.
        Regulation of human skin pigmentation and responses to ultraviolet radiation.
        Pigment Cell Res. 2007; 20: 2-13
        • Yamaguchi Y.
        • Brenner M.
        • Hearing V.J.
        The regulation of skin pigmentation.
        J. Biol. Chem. 2007; 282: 27557-27561
        • Yamaguchi Y.
        • Hearing V.J.
        Physiological factors that regulate skin pigmentation.
        Biofactors. 2009; 35: 193-199
        • Widlund H.R.
        • Fisher D.E.
        Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival.
        Oncogene. 2003; 22: 3035-3041
        • Busca R.
        • Bertolotto C.
        • Ortonne J.P.
        • Ballotti R.
        Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation.
        J. Biol. Chem. 1996; 271: 31824-31830
        • Khaled M.
        • Larribere L.
        • Bille K.
        • Ortonne J.P.
        • Ballotti R.
        • Bertolotto C.
        Microphthalmia associated transcription factor is a target of the phosphatidylinositol-3-kinase pathway.
        J. Invest. Dermatol. 2003; 121: 831-836
        • Kim D.S.
        • Kim S.Y.
        • Chung J.H.
        • Kim K.H.
        • Eun H.C.
        • Park K.C.
        Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes.
        Cell. Signal. 2002; 14: 779-785
        • Yao C.
        • Oh J.H.
        • Oh I.G.
        • Park C.H.
        • Chung J.H.
        [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway.
        Acta Pharmacol. Sin. 2013; 34: 289-294
        • Bentley N.J.
        • Eisen T.
        • Goding C.R.
        Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator.
        Mol. Cell. Biol. 1994; 14: 7996-8006
        • Yasumoto K.
        • Yokoyama K.
        • Takahashi K.
        • Tomita Y.
        • Shibahara S.
        Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes.
        J. Biol. Chem. 1997; 272: 503-509
        • Bertolotto C.
        • Abbe P.
        • Hemesath T.J.
        • Bille K.
        • Fisher D.E.
        • Ortonne J.P.
        • Ballotti R.
        Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes.
        J. Cell Biol. 1998; 142: 827-835
        • Bertolotto C.
        • Busca R.
        • Abbe P.
        • Bille K.
        • Aberdam E.
        • Ortonne J.P.
        • Ballotti R.
        Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia.
        Mol. Cell. Biol. 1998; 18: 694-702
        • Gockler N.
        • Jofre G.
        • Papadopoulos C.
        • Soppa U.
        • Tejedor F.J.
        • Becker W.
        Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation.
        FEBS J. 2009; 276: 6324-6337
        • Adayev T.
        • Wegiel J.
        • Hwang Y.W.
        Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A).
        Arch. Biochem. Biophys. 2011; 507: 212-218
        • Kim H.
        • Sablin S.O.
        • Ramsay R.R.
        Inhibition of monoamine oxidase A by beta-carboline derivatives.
        Arch. Biochem. Biophys. 1997; 337: 137-142
        • Song Y.
        • Kesuma D.
        • Wang J.
        • Deng Y.
        • Duan J.
        • Wang J.H.
        • Qi R.Z.
        Specific inhibition of cyclin-dependent kinases and cell proliferation by harmine.
        Biochem. Biophys. Res. Commun. 2004; 317: 128-132
        • Wang P.
        • Alvarez-Perez J.C.
        • Felsenfeld D.P.
        • Liu H.
        • Sivendran S.
        • Bender A.
        • Kumar A.
        • Sanchez R.
        • Scott D.K.
        • Garcia-Ocana A.
        • Stewart A.F.
        A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication.
        Nat. Med. 2015; 21: 383-388
        • Waki H.
        • Park K.W.
        • Mitro N.
        • Pei L.
        • Damoiseaux R.
        • Wilpitz D.C.
        • Reue K.
        • Saez E.
        • Tontonoz P.
        The small molecule harmine is an antidiabetic cell-type-specific regulator of PPARgamma expression.
        Cell Metab. 2007; 5: 357-370
        • Egusa H.
        • Doi M.
        • Saeki M.
        • Fukuyasu S.
        • Akashi Y.
        • Yokota Y.
        • Yatani H.
        • Kamisaki Y.
        The small molecule harmine regulates NFATc1 and Id2 expression in osteoclast progenitor cells.
        Bone. 2011; 49: 264-274
        • Yonezawa T.
        • Lee J.W.
        • Hibino A.
        • Asai M.
        • Hojo H.
        • Cha B.Y.
        • Teruya T.
        • Nagai K.
        • Chung U.I.
        • Yagasaki K.
        • Woo J.T.
        Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling.
        Biochem. Biophys. Res. Commun. 2011; 409: 260-265
        • Hara E.S.
        • Ono M.
        • Kubota S.
        • Sonoyama W.
        • Oida Y.
        • Hattori T.
        • Nishida T.
        • Furumatsu T.
        • Ozaki T.
        • Takigawa M.
        • Kuboki T.
        Novel chondrogenic and chondroprotective effects of the natural compound harmine.
        Biochimie. 2013; 95: 374-381
        • Choi H.
        • Choi H.
        • Han J.
        • Jin S.H.
        • Park J.Y.
        • Shin D.W.
        • Lee T.R.
        • Kim K.
        • Lee A.Y.
        • Noh M.
        IL-4 inhibits the melanogenesis of normal human melanocytes through the JAK2-STAT6 signaling pathway.
        J. Invest. Dermatol. 2013; 133: 528-536
        • Kim M.
        • Han J.H.
        • Kim J.H.
        • Park T.J.
        • Kang H.Y.
        Secreted frizzled-related protein 2 (sFRP2) functions as a melanogenic stimulator; the role of sFRP2 in UV-induced hyperpigmentary disorders.
        J. Invest. Dermatol. 2016; 136: 236-244
        • Park C.H.
        • Chung J.H.
        Epidermal growth factor-induced matrix metalloproteinase-1 expression is negatively regulated by p38 MAPK in human skin fibroblasts.
        J. Dermatol. Sci. 2011; 64: 134-141
        • Hoek K.
        • Rimm D.L.
        • Williams K.R.
        • Zhao H.
        • Ariyan S.
        • Lin A.
        • Kluger H.M.
        • Berger A.J.
        • Cheng E.
        • Trombetta E.S.
        • Wu T.
        • Niinobe M.
        • Yoshikawa K.
        • Hannigan G.E.
        • Halaban R.
        Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas.
        Cancer Res. 2004; 64: 5270-5282
        • Kushimoto T.
        • Basrur V.
        • Valencia J.
        • Matsunaga J.
        • Vieira W.D.
        • Ferrans V.J.
        • Muller J.
        • Appella E.
        • Hearing V.J.
        A model for melanosome biogenesis based on the purification and analysis of early melanosomes.
        Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 10698-10703
        • Theos A.C.
        • Tenza D.
        • Martina J.A.
        • Hurbain I.
        • Peden A.A.
        • Sviderskaya E.V.
        • Stewart A.
        • Robinson M.S.
        • Bennett D.C.
        • Cutler D.F.
        • Bonifacino J.S.
        • Marks M.S.
        • Raposo G.
        Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes.
        Mol. Biol. Cell. 2005; 16: 5356-5372
        • Di Pietro S.M.
        • Falcon-Perez J.M.
        • Tenza D.
        • Setty S.R.
        • Marks M.S.
        • Raposo G.
        • Dell’Angelica E.C.
        BLOC-1 interacts with BLOC-2 and the AP-3 complex to facilitate protein trafficking on endosomes.
        Mol. Biol. Cell. 2006; 17: 4027-4038
        • Ganesan A.K.
        • Ho H.
        • Bodemann B.
        • Petersen S.
        • Aruri J.
        • Koshy S.
        • Richardson Z.
        • Le L.Q.
        • Krasieva T.
        • Roth M.G.
        • Farmer P.
        • White M.A.
        Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells.
        PLoS Genet. 2008; 4: e1000298
        • Kalie E.
        • Razi M.
        • Tooze S.A.
        ULK1 regulates melanin levels in MNT-1 cells independently of mTORC1.
        PLoS One. 2013; 8: e75313
        • Ogawa Y.
        • Nonaka Y.
        • Goto T.
        • Ohnishi E.
        • Hiramatsu T.
        • Kii I.
        • Yoshida M.
        • Ikura T.
        • Onogi H.
        • Shibuya H.
        • Hosoya T.
        • Ito N.
        • Hagiwara M.
        Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A.
        Nat. Commun. 2010; 1: 86
        • Bain J.
        • McLauchlan H.
        • Elliott M.
        • Cohen P.
        The specificities of protein kinase inhibitors: an update.
        Biochem. J. 2003; 371: 199-204
        • Aranda S.
        • Laguna A.
        • de la Luna S.
        DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles.
        FASEB J. 2011; 25: 449-462
        • Park J.
        • Song W.J.
        • Chung K.C.
        Function and regulation of Dyrk1A: towards understanding Down syndrome.
        Cell. Mol. Life Sci. 2009; 66: 3235-3240
        • Becker W.
        • Sippl W.
        Activation, regulation, and inhibition of DYRK1A.
        FEBS J. 2011; 278: 246-256
        • Pan M.G.
        • Xiong Y.
        • Chen F.
        NFAT gene family in inflammation and cancer.
        Curr. Mol. Med. 2013; 13: 543-554
        • Macian F.
        • Lopez-Rodriguez C.
        • Rao A.
        Partners in transcription: NFAT and AP-1.
        Oncogene. 2001; 20: 2476-2489
        • Rao A.
        • Luo C.
        • Hogan P.G.
        Transcription factors of the NFAT family: regulation and function.
        Annu. Rev. Immunol. 1997; 15: 707-747
        • Vihma H.
        • Pruunsild P.
        • Timmusk T.
        Alternative splicing and expression of human and mouse NFAT genes.
        Genomics. 2008; 92: 279-291
        • Gwack Y.
        • Sharma S.
        • Nardone J.
        • Tanasa B.
        • Iuga A.
        • Srikanth S.
        • Okamura H.
        • Bolton D.
        • Feske S.
        • Hogan P.G.
        • Rao A.
        A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT.
        Nature. 2006; 441: 646-650
        • Lee Y.S.
        • Kim D.W.
        • Kim S.
        • Choi H.I.
        • Lee Y.
        • Kim C.D.
        • Lee J.H.
        • Lee S.D.
        • Lee Y.H.
        Downregulation of NFAT2 promotes melanogenesis in B16 melanoma cells.
        Anat. Cell Biol. 2010; 43: 303-309