Advertisement
Original Article| Volume 103, ISSUE 2, P93-100, August 2021

H3K27Ac modification and gene expression in psoriasis

  • Moamen Masalha
    Affiliations
    Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel

    Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Search for articles by this author
  • Iddo Z. Ben-Dov
    Affiliations
    Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah – Hebrew University Medical Center, Jerusalem, Israel
    Search for articles by this author
  • Oren Ram
    Affiliations
    The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
    Search for articles by this author
  • Tal Meningher
    Affiliations
    Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
    Search for articles by this author
  • Jasmine Jacob-Hirsch
    Affiliations
    Center for Cancer Research Sheba Medical Center, Tel Hashomer, Israel
    Search for articles by this author
  • Riad Kassem
    Affiliations
    Department of Dermatology, Sheba Medical Center, Tel Hashomer, Israel
    Search for articles by this author
  • Yechezkel Sidi
    Correspondence
    Corresponding authors at: Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, 52621, Israel.
    Affiliations
    Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel

    Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Search for articles by this author
  • Dror Avni
    Correspondence
    Corresponding authors at: Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, 52621, Israel.
    Affiliations
    Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel

    Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
    Search for articles by this author

      Highlights

      • There is a differential H3K27Ac pattern between psoriatic to healthy skin.
      • There is a differential H3K27Ac pattern between psoriatic to uninvolved skin.
      • In most overexpressed genes in psoriasis, there is an enrichment of H3K27Ac.
      • Decreased gene expression in psoriasis does not correlate with decreased H3K27Ac.
      • Many psoriatic overexpressed and H3K27Ac enriched genes, have GRHL binding site.

      Abstract

      Background

      Numerous alterations in gene expression have been described in psoriatic lesions compared to uninvolved or healthy skin. However, the mechanisms which induce this altered expression remain unclear.
      Epigenetic modifications play a key role in regulating genes' expression. Only three studies compared the whole-genome DNA methylation of psoriasis versus healthy skin. The present is the first study of genome-wide comparison of histone modifications between psoriatic to healthy skins.

      Objective

      Our objective was to explore the pattern of H3K27Ac modifications in psoriatic lesions compared to uninvolved psoriatic and healthy skin, in order to identify new genes involved in the pathogenesis of psoriasis.

      Method

      Using ChIP-seq with anti H3K27Ac we compared the acetylation of lysine 27 on histone 3 (H3K27Ac) modification between psoriatic to healthy skins, combined with mRNA array.

      Results

      We found a differential H3K27Ac pattern between psoriatic compared to uninvolved or healthy skins. We found that many of the overexpressed and H3K27Ac enriched genes in psoriasis, harbor a putative GRHL transcription factor-binding site.

      Conclusions

      In the most overexpressed genes in psoriasis, there is an enrichment of H3K27Ac. However, the loss of H3K27 acetylation modification does not correlate with decreased gene expression.
      GRHL appears to play an important role in the pathogenesis of psoriasis and therefore, might be a new target for psoriasis therapeutics.

      Abbreviations:

      KC (Keratinocytes), H3K4me3 (Trimethylation of Histone H3 at lysine 4), H4K20me1 (Mono-methylation of Histone H4 at lysine 20), H3K79me1 (Mono-methylation of Histone H3 at lysine 79), H3K27Ac (Acetylation of the Histone H3 at lysine 27), H2BK5Ac (Acetylation of the Histone H2B at lysine 5), TSS (Transcription start site), DMR (Differentially methylated region), TF (Transcription factor), bps (Base pairs)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lowes M.A.
        • Bowcock A.M.
        • Krueger J.G.
        Pathogenesis and therapy of psoriasis.
        Nature. 2007; 445: 866-873
        • Bowcock A.M.
        • Shannon W.
        • Du F.
        • Duncan J.
        • Cao K.
        • Aftergut K.
        • Catier J.
        • Fernandez-Vina M.A.
        • Menter A.
        Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies.
        Hum. Mol. Genet. 2001; 10: 1793-1805
        • Suarez-Farinas M.
        • Lowes M.A.
        • Zaba L.C.
        • Krueger J.G.
        Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA).
        PLoS One. 2010; 5e10247
        • Karlic R.
        • Chung H.R.
        • Lasserre J.
        • Vlahovicek K.
        • Vingron M.
        Histone modification levels are predictive for gene expression.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 2926-2931
        • Creyghton M.P.
        • Cheng A.W.
        • Welstead G.G.
        • Kooistra T.
        • Carey B.W.
        • Steine E.J.
        • Hanna J.
        • Lodato M.A.
        • Frampton G.M.
        • Sharp P.A.
        • Boyer L.A.
        • Young R.A.
        • Jaenisch R.
        Histone H3K27ac separates active from poised enhancers and predicts developmental state.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 21931-21936
        • Hnisz D.
        • Abraham B.J.
        • Lee T.I.
        • Lau A.
        • Saint-André V.
        • Sigova A.A.
        • Hoke H.A.
        • Young R.A.
        Super-enhancers in the control of cell identity and disease.
        Cell. 2013; 155: 934-947
        • Zhang Y.
        • Liu T.
        • Meyer C.A.
        • Eeckhoute J.
        • Johnson D.S.
        • Bernstein B.E.
        • Nusbaum C.
        • Myers R.M.
        • Brown M.
        • Li W.
        • Liu X.S.
        Model-based analysis of ChIP-Seq (MACS).
        Genome Biol. 2008; 9: R137
        • Stark R.
        • Brown G.D.
        DiffBind: Differential Binding Analysis of ChIP-Seq Peak Data, Bioconductor.
        2011 (DiffBind.htm)
        • McLean C.Y.
        • Bristor D.
        • Hiller M.
        • Clarke S.L.
        • Schaar B.T.
        • Lowe C.B.
        • Wenger A.M.
        • Bejerano G.
        GREAT improves functional interpretation of cis-regulatory regions.
        Nat. Biotechnol. 2010; 28: 495-501
        • Wang S.
        • Sun H.
        • Ma J.
        • Zang C.
        • Wang C.
        • Wang J.
        • Tang Q.
        • Meyer C.A.
        • Zhang Y.
        • Liu X.S.
        Target analysis by integration of transcriptome and ChIP-seq data with BETA.
        Nat. Protoc. 2013; 8: 2502-2515
        • Landt S.G.
        • Marinov G.K.
        • Kundaje A.
        • Kheradpour P.
        • Pauli F.
        • Batzoglou S.
        • Bernstein B.E.
        • et al.
        ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.
        Genome Res. 2012; 22: 1813-1831
        • Raychaudhuri S.P.
        • Raychaudhuri S.K.
        • Genovese M.C.
        IL-17 receptor and its functional significance in psoriatic arthritis.
        Mol. Cell. Biochem. 2012; 359: 419-429
        • Johansen C.
        • Usher P.A.
        • Kjellerup R.B.
        • Lundsgaard D.
        • Iversen L.
        • Kragballe K.
        Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin.
        Br. J. Dermatol. 2009; 160: 319-324
        • Broome A.M.
        • Ryan D.
        • Eckert R.L.
        S100 protein subcellular localization during epidermal differentiation and psoriasis.
        J. Histochem. Cytochem. 2003; 51: 675-685
        • Stark R B.G.
        DiffBind: Differential Binding Analysis of ChIP-Seq Peak Data.
        Cancer Research UK - Cambridge Institute, 2011
        • Tian S.
        • Krueger J.G.
        • Li K.
        • Jabbari A.
        • Brodmerkel C.
        • Lowes M.A.
        • Suarez-Farinas M.
        Meta-analysis derived (MAD) transcriptome of psoriasis defines the "core" pathogenesis of disease.
        PLoS One. 2012; 7e44274
        • Zolotarenko A.
        • Chekalin E.
        • Mesentsev A.
        • Kiseleva L.
        • Gribanova E.
        • Mehta R.
        • Baranova A.
        • Tatarinova T.V.
        • Piruzian E.S.
        • Bruskin S.
        Integrated computational approach to the analysis of RNA-seq data reveals new transcriptional regulators of psoriasis.
        Exp. Mol. Med. 2016; 48: e268
        • Lerman G.
        • Avivi C.
        • Mardoukh C.
        • Barzilai A.
        • Tessone A.
        • Gradus B.
        • Pavlotsky F.
        • Barshack I.
        • Polak-Charcon S.
        • Orenstein A.
        • Hornstein E.
        • Sidi Y.
        • Avni D.
        MiRNA expression in psoriatic skin: reciprocal regulation of hsa-miR-99a and IGF-1R.
        PLoS One. 2011; 6e20916
        • Sonkoly E.
        • Wei T.
        • Janson P.C.
        • Saaf A.
        • Lundeberg L.
        • Tengvall-Linder M.
        • Norstedt G.
        • Alenius H.
        • Homey B.
        • Scheynius A.
        • Stahle M.
        • Pivarcsi A.
        MicroRNAs: Novel Regulators Involved in the Pathogenesis of Psoriasis?.
        PLoS One. 2007; 2: e610
        • Ichihara A.
        • Jinnin M.
        • Yamane K.
        • Fujisawa A.
        • Sakai K.
        • Masuguchi S.
        • Fukushima S.
        • Maruo K.
        • Ihn H.
        microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris.
        Br. J. Dermatol. 2011; 165: 1003-1010
        • Joyce C.E.
        • Zhou X.
        • Xia J.
        • Ryan C.
        • Thrash B.
        • Menter A.
        • Zhang W.
        • Bowcock A.M.
        Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome.
        Hum. Mol. Genet. 2011; 20: 4025-4040
        • Zibert J.R.
        • Lovendorf M.B.
        • Litman T.
        • Olsen J.
        • Kaczkowski B.
        • Skov L.
        MicroRNAs and potential target interactions in psoriasis.
        J. Dermatol. Sci. 2010; 58: 177-185
        • Huang da W.
        • Sherman B.T.
        • Lempicki R.A.
        Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.
        Nucleic Acids Res. 2009; 37: 1-13
        • Kirschner N.
        • Poetzl C.
        • von den Driesch P.
        • Wladykowski E.
        • Moll I.
        • Behne M.J.
        • Brandner J.M.
        Alteration of tight junction proteins is an early event in psoriasis: putative involvement of proinflammatory cytokines.
        Am. J. Pathol. 2009; 175: 1095-1106
        • Roberson E.D.
        • Liu Y.
        • Ryan C.
        • Joyce C.E.
        • Duan S.
        • Cao L.
        • Martin A.
        • Liao W.
        • Menter A.
        • Bowcock A.M.
        A subset of methylated CpG sites differentiate psoriatic from normal skin.
        J. Invest. Dermatol. 2012; 132: 583-592
        • Zhang P.
        • Zhao M.
        • Liang G.
        • Yin G.
        • Huang D.
        • Su F.
        • Zhai H.
        • Wang L.
        • Su Y.
        • Lu Q.
        Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris.
        J. Autoimmun. 2013; 41: 17-24
        • Zhou F.
        • Wang W.
        • Shen C.
        • Li H.
        • Zuo X.
        • Zheng X.
        • Yue M.
        • Zhang C.
        • Yu L.
        • Chen M.
        • Zhu C.
        • Yin X.
        • Tang M.
        • Li Y.
        • Chen G.
        • Wang Z.
        • Liu S.
        • Zhou Y.
        • Zhang F.
        • Zhang W.
        • Li C.
        • Yang S.
        • Sun L.
        • Zhang X.
        Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis.
        J. Invest. Dermatol. 2016; 136: 779-787
        • Li F.
        • Yuan C.W.
        • Xu S.
        • Zu T.
        • Woappi Y.
        • Lee C.A.A.
        • Abarzua P.
        • Wells M.
        • Ramsey M.R.
        • Frank N.Y.
        • Wu X.
        • Mandinova A.
        • Frank M.H.
        • Lian C.G.
        • Murphy G.F.
        Loss of the epigenetic mark 5-hmC in psoriasis: implications for epidermal stem cell dysregulation.
        J. Invest. Dermatol. 2020; 140 (e3): 1266-1275
        • Klemm S.L.
        • Shipony Z.
        • Greenleaf W.J.
        Chromatin accessibility and the regulatory epigenome.
        Nat. Rev. Genet. 2019; 20: 207-220
        • Tang L.
        • Wang M.
        • Shen C.
        • Wen L.
        • Li M.
        • Wang D.
        • Zheng X.
        • Sheng Y.
        • Wu W.
        • Zhang C.
        • Zhang X.
        • Zhou F.
        ATAC-seq analysis reveals a widespread increase in chromatin accessibility in psoriasis.
        J. Invest. Dermatol. 2021;
        • Clapier C.R.
        • Cairns B.R.
        The biology of chromatin remodeling complexes.
        Annu. Rev. Biochem. 2009; 78: 273-304
        • Ong C.T.
        • Corces V.G.
        Enhancer function: new insights into the regulation of tissue-specific gene expression.
        Nat. Rev. Genet. 2011; 12: 283-293
        • Xin B.
        • Rohs R.
        Relationship between histone modifications and transcription factor binding is protein family specific.
        Genome Res. 2018;
        • Sano S.
        • Chan K.S.
        • Carbajal S.
        • Clifford J.
        • Peavey M.
        • Kiguchi K.
        • Itami S.
        • Nickoloff B.J.
        • DiGiovanni J.
        Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model.
        Nat. Med. 2005; 11: 43-49
        • Jackson M.
        • Howie S.E.
        • Weller R.
        • Sabin E.
        • Hunter J.A.
        • McKenzie R.C.
        Psoriatic keratinocytes show reduced IRF-1 and STAT-1alpha activation in response to gamma-IFN.
        FASEB J. 1999; 13: 495-502
        • van der Fits L.
        • van der Wel L.I.
        • Laman J.D.
        • Prens E.P.
        • Verschuren M.C.
        Psoriatic lesional skin exhibits an aberrant expression pattern of interferon regulatory factor-2 (IRF-2).
        J. Pathol. 2003; 199: 107-114
        • Lu X.
        • Du J.
        • Liang J.
        • Zhu X.
        • Yang Y.
        • Xu J.
        Transcriptional regulatory network for psoriasis.
        J. Dermatol. 2013; 40: 48-53
        • Gordon W.M.
        • Zeller M.D.
        • Klein R.H.
        • Swindell W.R.
        • Ho H.
        • Espetia F.
        • Gudjonsson J.E.
        • Baldi P.F.
        • Andersen B.
        A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia.
        J. Clin. Invest. 2014; 124: 5205-5218
        • Wang S.
        • Samakovlis C.
        Grainy head and its target genes in epithelial morphogenesis and wound healing.
        Curr. Top. Dev. Biol. 2012; 98: 35-63
        • Wilanowski T.
        • Caddy J.
        • Ting S.B.
        • Hislop N.R.
        • Cerruti L.
        • Auden A.
        • Zhao L.L.
        • Asquith S.
        • Ellis S.
        • Sinclair R.
        • Cunningham J.M.
        • Jane S.M.
        Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.
        EMBO J. 2008; 27: 886-897
        • Chen W.
        • Xiao Liu Z.
        • Oh J.E.
        • Shin K.H.
        • Kim R.H.
        • Jiang M.
        • Park N.H.
        • Kang M.K.
        Grainyhead-like 2 (GRHL2) inhibits keratinocyte differentiation through epigenetic mechanism.
        Cell Death Dis. 2012; 3: e450
        • Ting S.B.
        • Caddy J.
        • Hislop N.
        • Wilanowski T.
        • Auden A.
        • Zhao L.L.
        • Ellis S.
        • Kaur P.
        • Uchida Y.
        • Holleran W.M.
        • Elias P.M.
        • Cunningham J.M.
        • Jane S.M.
        A homolog of Drosophila grainy head is essential for epidermal integrity in mice.
        Science. 2005; 308: 411-413
        • Yu X.
        • An J.
        • Hua Y.
        • Li Z.
        • Yan N.
        • Fan W.
        • Su C.
        MicroRNA-194 regulates keratinocyte proliferation and differentiation by targeting Grainyhead-like 2 in psoriasis.
        Pathol. Res. Pract. 2017; 213: 89-97
        • Zhu H.
        • Hou L.
        • Liu J.
        • Li Z.
        MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2.
        Biochem. Biophys. Res. Commun. 2016; 471: 169-176
        • Swindell W.R.
        • Sarkar M.K.
        • Stuart P.E.
        • Voorhees J.J.
        • Elder J.T.
        • Johnston A.
        • Gudjonsson J.E.
        Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites.
        Clin. Transl. Med. 2015; 4: 13
        • Klein R.H.
        • Lin Z.
        • Hopkin A.S.
        • Gordon W.
        • Tsoi L.C.
        • Liang Y.
        • Gudjonsson J.E.
        • Andersen B.
        GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.
        PLoS Genet. 2017; 13e1006745
        • Botchkarev V.A.
        • Gdula M.R.
        • Mardaryev A.N.
        • Sharov A.A.
        • Fessing M.Y.
        Epigenetic regulation of gene expression in keratinocytes.
        J. Invest. Dermatol. 2012; 132: 2505-2521
        • Lerman G.
        • Sharon M.
        • Leibowitz-Amit R.
        • Sidi Y.
        • Avni D.
        The crosstalk between IL-22 signaling and miR-197 in human keratinocytes.
        PLoS One. 2014; 9e107467
        • Zhang T.
        • Yang L.
        • Ke Y.
        • Lei J.
        • Shen S.
        • Shao S.
        • Zhang C.
        • Zhu Z.
        • Dang E.
        • Wang G.
        EZH2-dependent epigenetic modulation of histone H3 lysine-27 contributes to psoriasis by promoting keratinocyte proliferation.
        Cell Death Dis. 2020; 11: 826
        • Sen G.L.
        • Webster D.E.
        • Barragan D.I.
        • Chang H.Y.
        • Khavari P.A.
        Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3.
        Genes Dev. 2008; 22: 1865-1870