Advertisement
Original Article| Volume 103, ISSUE 2, P109-115, August 2021

Serum lactate dehydrogenase level as a possible predictor of treatment preference in psoriasis

      Highlights

      • The serum LDH level correlates with the clinical improvement and are downregulated by apremilast in psoriasis.
      • The serum LDH level reflects the oxygen consumption rate of blood T cells in the psoriatic patients.
      • Our results imply that the metabolic skew in immune cells could be a treatment target in psoriasis.

      Abstract

      Background

      The efficacy of small molecule inhibitors for intracellular signal mediators varies among the individuals, and their mechanism of action is broad. A phosphodiesterase 4 inhibitor apremilast shows a dramatic effect on a certain proportion of psoriatic patients by modulating the cellular metabolism and regulating the production of pro-inflammatory molecules. However, it is unclear to which disease subtype this drug benefits. While psoriasis is a Th17-mediated disease, how immune cells are affected by the modulation of cellular metabolism is not fully evaluated, either.

      Objective

      This study aims to identify the indices which predict the efficacy of apremilast in psoriasis, and to investigate the impact of metabolic activity in immune cells on the psoriatic pathogenesis.

      Methods

      The association of treatment efficacy with clinical and laboratory data of the 58 psoriatic patients was evaluated. The reflector of the associated index was also sought among the indices of cellular metabolic pathways by use of an extracellular flux analyzer.

      Results

      There was a correlation between clinical improvement and the serum lactate dehydrogenase (LDH) level in the patients treated with apremilast but not in those with biologics. Serum LDH level did not correlate with the cutaneous disease severity but correlated with the oxygen consumption rate of blood T cells.

      Conclusion

      Psoriatic patients with high serum LDH level can be benefitted by apremilast. The serum LDH level reflects the augmented respiratory activity of T cells in psoriasis. Our results would highlight the importance of regarding metabolic skew in immune cells as a treatment target in psoriasis.

      Abbreviations:

      ATP (adenosine triphosphate), cAMP (cyclic adenosine monophosphate), ECAR (extracellular acidification rate), IL (interleukin), LDH (lactate dehydrogenase), OCR (oxygen consumption rate), OXPHOS (oxidative phosphorylation), PASI (psoriasis area and severity index), PDE4 (phosphodiesterase 4), Th (T helper lymphocytes)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Liu T.
        • Li S.
        • Ying S.
        • Tang S.
        • Ding Y.
        • Li Y.
        • Qiao J.
        • Fang H.
        The IL-23/IL-17 pathway in inflammatory skin diseases: from bench to bedside.
        Front. Immunol. 2020; 11: 594735
        • Yamanaka K.
        • Yamamoto O.
        • Honda T.
        Pathophysiology of psoriasis: a review.
        J. Dermatol. 2021;
        • Hawkes J.E.
        • Yan B.Y.
        • Chan T.C.
        • Krueger J.G.
        Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis.
        J. Immunol. 2018; 201: 1605-1613
        • Girolomoni G.
        • Strohal R.
        • Puig L.
        • Bachelez H.
        • Barker J.
        • Boehncke W.H.
        • Prinz J.C.
        The role of IL-23 and the IL-23/T(H) 17 immune axis in the pathogenesis and treatment of psoriasis.
        J. Eur. Acad. Dermatol. Venereol. 2017; 31: 1616-1626
        • Mrowietz U.
        • Szepietowski J.C.
        • Loewe R.
        • van de Kerkhof P.
        • Lamarca R.
        • Ocker W.G.
        • Tebbs V.M.
        • Pau-Charles I.
        Efficacy and safety of LAS41008 (dimethyl fumarate) in adults with moderate-to-severe chronic plaque psoriasis: a randomized, double-blind, Fumaderm(®) - and placebo-controlled trial (BRIDGE).
        Br. J. Dermatol. 2017; 176: 615-623
        • Kornberg M.D.
        • Bhargava P.
        • Kim P.M.
        • Putluri V.
        • Snowman A.M.
        • Putluri N.
        • Calabresi P.A.
        • Snyder S.H.
        Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity.
        Science. 2018; 360: 449-453
        • Brion D.E.
        • Raynaud F.
        • Plet A.
        • Laurent P.
        • Leduc B.
        • Anderson W.
        Deficiency of cyclic AMP-dependent protein kinases in human psoriasis.
        Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 5272-5276
        • Raynaud F.
        • Gerbaud P.
        • Enjolras O.
        • Gorin I.
        • Donnadieu M.
        • Anderson W.B.
        • Evain-Brion D.
        A cAMP binding abnormality in psoriasis.
        Lancet. 1989; 1: 1153-1156
        • Yoshikawa K.
        • Adachi K.
        • Halprin K.M.
        • Levine V.
        On the lack of response to catecholamine stimulation by the adenyl cyclase system in psoriatic lesions.
        Br. J. Dermatol. 1975; 92: 619-624
        • Yoshikawa K.
        • Adachi K.
        • Halprin K.M.
        • Levine V.
        Is the cyclic AMP in psoriatic epidermis low?.
        Br. J. Dermatol. 1975; 93: 253-258
        • Mosenden R.
        • Taskén K.
        Cyclic AMP-mediated immune regulation--overview of mechanisms of action in T cells.
        Cell. Signal. 2011; 23: 1009-1016
        • Park S.J.
        • Ahmad F.
        • Philp A.
        • Baar K.
        • Williams T.
        • Luo H.
        • Ke H.
        • Rehmann H.
        • Taussig R.
        • Brown A.L.
        • Kim M.K.
        • Beaven M.A.
        • Burgin A.B.
        • Manganiello V.
        • Chung J.H.
        Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.
        Cell. 2012; 148: 421-433
        • Papp K.
        • Cather J.C.
        • Rosoph L.
        • Sofen H.
        • Langley R.G.
        • Matheson R.T.
        • Hu C.
        • Day R.M.
        Efficacy of apremilast in the treatment of moderate to severe psoriasis: a randomised controlled trial.
        Lancet. 2012; 380: 738-746
        • Paul C.
        • Cather J.
        • Gooderham M.
        • Poulin Y.
        • Mrowietz U.
        • Ferrandiz C.
        • Crowley J.
        • Hu C.
        • Stevens R.M.
        • Shah K.
        • Day R.M.
        • Girolomoni G.
        • Gottlieb A.B.
        Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in patients with moderate-to-severe plaque psoriasis over 52 weeks: a phase III, randomized controlled trial (ESTEEM 2).
        Br. J. Dermatol. 2015; 173: 1387-1399
        • Papp K.A.
        • Kaufmann R.
        • Thaci D.
        • Hu C.
        • Sutherland D.
        • Rohane P.
        Efficacy and safety of apremilast in subjects with moderate to severe plaque psoriasis: results from a phase II, multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-comparison study.
        J. Eur. Acad. Dermatol. Venereol. 2013; 27: e376-83
        • Vujic I.
        • Herman R.
        • Sanlorenzo M.
        • Posch C.
        • Monshi B.
        • Rappersberger K.
        • Richter L.
        Apremilast in psoriasis - a prospective real-world study.
        J. Eur. Acad. Dermatol. Venereol. 2018; 32: 254-259
        • Nicholas D.
        • Proctor E.A.
        • Raval F.M.
        • Ip B.C.
        • Habib C.
        • Ritou E.
        • Grammatopoulos T.N.
        • Steenkamp D.
        • Dooms H.
        • Apovian C.M.
        • Lauffenburger D.A.
        • Nikolajczyk B.S.
        Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis.
        PLoS One. 2017; 12e0170975
        • Papp K.A.
        • Langley R.G.
        • Sigurgeirsson B.
        • Abe M.
        • Baker D.R.
        • Konno P.
        • Haemmerle S.
        • Thurston H.J.
        • Papavassilis C.
        • Richards H.B.
        Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study.
        Br. J. Dermatol. 2013; 168: 412-421
        • Tiberio R.
        • Graziola F.
        • Miglino B.
        • Veronese F.
        • Annali G.
        • Savoia P.
        Secukinumab for psoriasis in obese patients: minireview and clinical experience.
        Case Rep. Dermatol. 2019; 11: 29-37
        • Tsukahara T.
        • Otoyama K.
        • Horiuchi Y.
        Significance of elevated serum squamous cell carcinoma (SCC)-related antigen and lactate dehydrogenase (LDH) levels in senile erythroderma following eczema.
        J. Dermatol. 1993; 20: 346-350
        • Mukai H.
        • Noguchi T.
        • Kamimura K.
        • Nishioka K.
        • Nishiyama S.
        Significance of elevated serum LDH (lactate dehydrogenase) activity in atopic dermatitis.
        J. Dermatol. 1990; 17: 477-481
        • Ratter J.M.
        • Rooijackers H.M.M.
        • Hooiveld G.J.
        • Hijmans A.G.M.
        • de Galan B.E.
        • Tack C.J.
        • Stienstra R.
        In vitro and in vivo effects of lactate on metabolism and cytokine production of human primary PBMCs and monocytes.
        Front. Immunol. 2018; 9
        • Seth P.
        • Csizmadia E.
        • Hedblom A.
        • Vuerich M.
        • Xie H.
        • Li M.
        • Longhi M.S.
        • Wegiel B.
        Deletion of lactate Dehydrogenase-A in myeloid cells triggers antitumor immunity.
        Cancer Res. 2017; 77: 3632-3643
        • Hermans D.
        • Gautam S.
        • García-Cañaveras J.C.
        • Gromer D.
        • Mitra S.
        • Spolski R.
        • Li P.
        • Christensen S.
        • Nguyen R.
        • Lin J.-X.
        • Oh J.
        • Du N.
        • Veenbergen S.
        • Fioravanti J.
        • Ebina-Shibuya R.
        • Bleck C.
        • Neckers L.M.
        • Rabinowitz J.D.
        • Gattinoni L.
        • Leonard W.J.
        Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8+ T cell stemness and antitumor immunity.
        Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 6047
        • Peng M.
        • Yin N.
        • Chhangawala S.
        • Xu K.
        • Leslie C.S.
        • Li M.O.
        Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism.
        Science. 2016; 354: 481
        • Angelin A.
        • Gil-de-Gómez L.
        • Dahiya S.
        • Jiao J.
        • Guo L.
        • Levine M.H.
        • Wang Z.
        • Quinn W.J.
        • Kopinski P.K.
        • Wang L.
        • Akimova T.
        • Liu Y.
        • Bhatti T.R.
        • Han R.
        • Laskin B.L.
        • Baur J.A.
        • Blair I.A.
        • Wallace D.C.
        • Hancock W.W.
        • Beier U.H.
        Foxp3 reprograms t cell metabolism to function in low-glucose, high-lactate environments.
        Cell Metab. 2017; 25 (1282-1293.e7)
        • Parker N.
        • Vidal-Puig A.
        • Brand M.D.
        Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential.
        Biosci. Rep. 2008; 28: 83-88
        • Cheng J.
        • Nanayakkara G.
        • Shao Y.
        • Cueto R.
        • Wang L.
        • Yang W.Y.
        • Tian Y.
        • Wang H.
        • Yang X.
        Mitochondrial proton leak plays a critical role in pathogenesis of cardiovascular diseases.
        Adv. Exp. Med. Biol. 2017; 982: 359-370
        • Jungmann R.A.
        • Constantinou A.I.
        • Squinto S.P.
        • Kwast-Welfeld J.
        • Schweppe J.S.
        Regulation of lactate dehydrogenase gene expression by cAMP-dependent protein kinase subunits.
        Ann. N. Y. Acad. Sci. 1986; 478: 147-161
        • Myśliwiec H.
        • Baran A.
        • Harasim-Symbor E.
        • Myśliwiec P.
        • Milewska A.J.
        • Chabowski A.
        • Flisiak I.
        Serum fatty acid profile in psoriasis and its comorbidity.
        Arch. Dermatol. Res. 2017; 309: 371-380
        • Nicholas D.A.
        • Proctor E.A.
        • Agrawal M.
        • Belkina A.C.
        • Van Nostrand S.C.
        • et al.
        Fatty acid metabolites combine with reduced β oxidation to activate Th17 inflammation in human type 2 diabetes.
        Cell Metab. 2019; 30 (447-461.e5)
        • Young K.E.
        • Flaherty S.
        • Woodman K.M.
        • Sharma-Walia N.
        • Reynolds J.M.
        Fatty acid synthase regulates the pathogenicity of Th17 cells.
        J. Leukoc. Biol. 2017; 102: 1229-1235
        • Houten S.M.
        • Violante S.
        • Ventura F.V.
        • Wanders R.J.
        The biochemistry and physiology of mitochondrial fatty acid β-Oxidation and its genetic disorders.
        Annu. Rev. Physiol. 2016; 78: 23-44
        • Therianou A.
        • Vasiadi M.
        • Delivanis D.A.
        • Petrakopoulou T.
        • Katsarou-Katsari A.
        • Antoniou C.
        • Stratigos A.
        • Tsilioni I.
        • Katsambas A.
        • Rigopoulos D.
        • Theoharides T.C.
        Mitochondrial dysfunction in affected skin and increased mitochondrial DNA in serum from patients with psoriasis.
        Exp. Dermatol. 2019; 28: 72-75
        • Scrima R.
        Alterations of mitochondrial respiration and complex I activity in mononucleate cells from psoriatic patients: possible involvement of GRIM-19-STAT3α/β.
        J. Clin. Cell. Immunol. 2014; 05
        • von Meyenn L.
        • Bertschi N.L.
        • Schlapbach C.
        Targeting t cell metabolism in inflammatory skin disease.
        Front. Immunol. 2019; 10: 2285
        • van der Windt G.J.
        • Pearce E.L.
        Metabolic switching and fuel choice during T-cell differentiation and memory development.
        Immunol. Rev. 2012; 249: 27-42
        • Ho J.
        • de Moura M.B.
        • Lin Y.
        • Vincent G.
        • Thorne S.
        • Duncan L.M.
        • Hui-Min L.
        • Kirkwood J.M.
        • Becker D.
        • Van Houten B.
        • Moschos S.J.
        Importance of glycolysis and oxidative phosphorylation in advanced melanoma.
        Mol. Cancer. 2012; 11: 76
        • Mishra D.
        • Banerjee D.
        Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment.
        Cancers (Basel). 2019; 11
        • Oshima N.
        • Ishida R.
        • Kishimoto S.
        • Beebe K.
        • Brender J.R.
        • Yamamoto K.
        • Urban D.
        • Rai G.
        • Johnson M.S.
        • Benavides G.
        • Squadrito G.L.
        • Crooks D.
        • Jackson J.
        • Joshi A.
        • Mott B.T.
        • Shrimp J.H.
        • Moses M.A.
        • Lee M.J.
        • Yuno A.
        • Lee T.D.
        • Hu X.
        • Anderson T.
        • Kusewitt D.
        • Hathaway H.H.
        • Jadhav A.
        • Picard D.
        • Trepel J.B.
        • Mitchell J.B.
        • Stott G.M.
        • Moore W.
        • Simeonov A.
        • Sklar L.A.
        • Norenberg J.P.
        • Linehan W.M.
        • Maloney D.J.
        • Dang C.V.
        • Waterson A.G.
        • Hall M.
        • Darley-Usmar V.M.
        • Krishna M.C.
        • Neckers L.M.
        Dynamic Imaging of LDH Inhibition in Tumors Reveals Rapid In Vivo Metabolic Rewiring and Vulnerability to Combination Therapy.
        Cell Rep. 2020; 30 (1798-1810.e4)
        • Brooks G.A.
        The science and translation of lactate shuttle theory.
        Cell Metab. 2018; 27: 757-785
        • Shin B.
        • Benavides G.A.
        • Geng J.
        • Koralov S.B.
        • Hu H.
        • Darley-Usmar V.M.
        • Harrington L.E.
        Mitochondrial oxidative phosphorylation regulates the fate decision between pathogenic Th17 and regulatory t cells.
        Cell Rep. 2020; 30 (1898-1909.e4)
        • Davidovici B.B.
        • Sattar N.
        • Prinz J.
        • Puig L.
        • Emery P.
        • Barker J.N.
        • van de Kerkhof P.
        • Stahle M.
        • Nestle F.O.
        • Girolomoni G.
        • Krueger J.G.
        Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions.
        J. Invest. Dermatol. 2010; 130: 1785-1796
        • Singh S.
        • Young P.
        • Armstrong A.W.
        An update on psoriasis and metabolic syndrome: a meta-analysis of observational studies.
        PLoS One. 2017; 12 (e0181039-e0181039)
        • Gisondi P.
        • Tessari G.
        • Conti A.
        • Piaserico S.
        • Schianchi S.
        • Peserico A.
        • Giannetti A.
        • Girolomoni G.
        Prevalence of metabolic syndrome in patients with psoriasis: a hospital-based case-control study.
        Br. J. Dermatol. 2007; 157: 68-73
        • Gisondi P.
        • Fostini A.C.
        • Fossà I.
        • Girolomoni G.
        • Targher G.
        Psoriasis and the metabolic syndrome.
        Clin. Dermatol. 2018; 36: 21-28
        • Gerriets V.A.
        • Kishton R.J.
        • Nichols A.G.
        • Macintyre A.N.
        • Inoue M.
        • Ilkayeva O.
        • Winter P.S.
        • Liu X.
        • Priyadharshini B.
        • Slawinska M.E.
        • Haeberli L.
        • Huck C.
        • Turka L.A.
        • Wood K.C.
        • Hale L.P.
        • Smith P.A.
        • Schneider M.A.
        • MacIver N.J.
        • Locasale J.W.
        • Newgard C.B.
        • Shinohara M.L.
        • Rathmell J.C.
        Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation.
        J. Clin. Invest. 2015; 125: 194-207
        • Lückel C.
        • Picard F.
        • Raifer H.
        • Campos Carrascosa L.
        • Guralnik A.
        • Zhang Y.
        • Klein M.
        • Bittner S.
        • Steffen F.
        • Moos S.
        • Marini F.
        • Gloury R.
        • Kurschus F.C.
        • Chao Y.Y.
        • Bertrams W.
        • Sexl V.
        • Schmeck B.
        • Bonetti L.
        • Grusdat M.
        • Lohoff M.
        • Zielinski C.E.
        • Zipp F.
        • Kallies A.
        • Brenner D.
        • Berger M.
        • Bopp T.
        • Tackenberg B.
        • Huber M.
        IL-17(+) CD8(+) T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis.
        Nat. Commun. 2019; 10: 5722
        • Mavropoulos A.
        • Zafiriou E.
        • Simopoulou T.
        • Brotis A.G.
        • Liaskos C.
        • Roussaki-Schulze A.
        • Katsiari C.G.
        • Bogdanos D.P.
        • Sakkas L.I.
        Apremilast increases IL-10-producing regulatory B cells and decreases proinflammatory T cells and innate cells in psoriatic arthritis and psoriasis.
        Rheumatology (Oxford). 2019; 58: 2240-2250
        • Kaushik S.B.
        • Lebwohl M.G.
        CME part I psoriasis: which therapy for which patient psoriasis comorbidities and preferred systemic agents.
        J. Am. Acad. Dermatol. 2018;