Decreased mitochondrial function in UVA-irradiated dermal fibroblasts causes the insufficient formation of type I collagen and fibrillin-1 fibers


      • UVA irradiated fibroblasts form insufficient dermal fibers.
      • The ratio of extracellular versus intracellular fiber proteins is decreased by UVA.
      • Intracellular ATP levels in fibroblasts decrease immediately after UVA irradiation.
      • Mitochondrial quality in UVA-exposed fibroblasts decreases due to MITOL depletion.
      • Knockdown of MITOL in fibroblasts decreases the production of dermal fibers.



      Decreases of collagen fibers and the disappearance of oxytalan fibers are typical symptoms of photoaged skin. Although a low quality of mitochondria (MT) in photoaged skin cells has been observed, it is unknown whether the decreased quality of MT is responsible for the insufficient formation of dermal fibers.


      To identify the role of mitochondrial quality in skin photoaging focusing on the formation of dermal fibers.


      Type I collagen and fibrillin-1 fibers in normal human dermal fibroblasts (NHDFs) were observed by immunostaining. Type I collagen and fibrillin-1 proteins in NHDFs were quantified by ELISA. Mitochondrial quality was evaluated by measuring levels of intracellular ATP and MITOL, which regulate mitochondrial quality.


      UVA-irradiated NHDFs formed insufficient type I collagen and fibrillin-1 fibers and had a decreased ratio of extracellular versus intracellular levels of those proteins. Although expression levels of motor proteins that transport those proteins intracellularly were not affected by UVA, intracellular ATP levels, which is the driving force of motor proteins, were decreased by UVA along with decreased MITOL protein. Knockdown of MITOL in NHDFs decreased the level of intracellular ATP and caused the insufficient formation of type I collagen and fibrillin-1 fibers due to interfering with the secretion of those proteins.


      These results indicate that a low quality of MT with ATP depletion in dermal fibroblasts caused by irradiation with UVA induces the insufficient formation of type I collagen and fibrillin-1 fibers due to the decreased extracellular secretion of those proteins.


      MT (mitochondria), ATP (adenosine triphosphate), Drp1 (GTPase dynamin-related protein 1), Mfn (mitofusin), MITOL (mitochondrial ubiquitin ligase), ROS (reactive oxygen species), DMEM (Dulbecco's modified Eagle's medium), FBS (fetal bovine serum), BSA (bovine serum albumin), ABTS (2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), NHDFs (normal human dermal fibroblasts), NMIIB (non-muscle myosin IIB), KIF5B (kinesin family member 5B), ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), MMP (matrix metalloprotease)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Scharffetter-Kochanek K.
        • Brenneisen P.
        • Wenk J.
        • Herrmann G.
        • Ma W.
        • Kuhr L.
        • et al.
        Photoaging of the skin from phenotype to mechanisms.
        Exp. Gerontol. 2000; 35: 307-316
        • Battie C.
        • Jitsukawa S.
        • Bernerd F.
        • Bino S.D.
        • Marionnet C.
        • Verschoore M.
        New insights in photoaging, UVA induced damage and skin types, Exp.
        Dermatol. 2004; Suppl 1: 7-12
        • Naylor E.C.
        • Watson R.E.B.
        • Sherratt M.J.
        Molecular aspects of skin ageing.
        Maturitas. 2011; 69: 249-256
        • Chung J.H.
        • Seo J.Y.
        • Choi H.R.
        • Lee M.K.
        • Youn C.S.
        • Rhie G.
        • et al.
        Modulation of skin collagen metabolism in aged and photoaged human skin in vivo.
        J. Invest. Dermatol. 2001; 117: 1218-1224
        • Lee J.Y.
        • Kim Y.K.
        • Seo J.Y.
        • Choi C.W.
        • Hwang J.S.
        • Lee B.G.
        • et al.
        Loss of elastic fibers causes skin wrinkles in sun-damaged human skin.
        J. Dermatol. Sci. 2008; 50: 99-107
        • Naidoo K.
        • Hanna R.
        • Birch-Machin M.A.
        What is the role of mitochondrial dysfunction in skin photoaging?.
        Exp. Dermatol. 2018; 27: 124-128
        • Hüttemann M.
        • Lee I.
        • Samavati L.
        • Yu H.
        • Doan J.W.
        Regulation of mitochondrial oxidative phosphorylation through cell signaling.
        Biochim. Biophys. Acta. 1773; 2007: 1701-1720
        • Seo A.Y.
        • Joseph A.M.
        • Dutta D.
        • Hwang J.C.Y.
        • Aris J.P.
        • Leeuwenburgh C.
        New insights into the role of mitochondria in aging: mitochondrial dynamics and more.
        J. Cell Sci. 2010; 123: 2533-2542
        • Gan Y.H.X.
        • Zhang L.
        • Liu B.
        • Zhu Z.
        • Li T.
        • Zhu J.
        • et al.
        CoCl2 induces apoptosis via a ROS-dependent pathway and Drp1-mediated mitochondria fission in periodontal ligament stem cells.
        Am. J. Physiol. Cell Physiol. 2018; 315: C389-C397
        • Nagashima S.
        • Tokuyama T.
        • Yonashiro R.
        • Inatome R.
        • Yanagi S.
        Roles of mitochondrial ubiquitin ligase MITOL/MARCH5 in mitochondrial dynamics and diseases.
        J. Biochem. 2014; 155: 273-279
        • Shiiba I.
        • Takeda K.
        • Nagashima S.
        • Yanagi S.
        Overview of mitochondrial E3 ubiquitin ligase MITOL/MARCH5 from molecular mechanisms to diseases.
        Int. J. Mol. Sci. 2020; 21: 3781
        • Babiychuk E.B.
        • Atanassoff A.P.
        • Monastyrskaya K.
        • Brandenberger C.
        • Studer D.
        • Allemann C.
        • et al.
        The targeting of plasmalemmal ceramide to mitochondria during apoptosis.
        PLoS One. 2011; 6e23706
        • Kauffman M.E.
        • Kauffman M.K.
        • Traore K.
        • Zhu H.
        • Trush M.A.
        • Jia Z.
        • et al.
        MitoSOX-based flow cytometry for detecting mitochondrial ROS.
        React. Oxyg. Species. 2016; 2: 361-370
        • Quan T.
        • Qin Z.
        • Xia W.
        • Shao Y.
        • Voorhees J.J.
        • Fisher G.J.
        Matrix-degrading metalloproteinases in photoaging.
        J. Invest. Dermatol. Symp. Proc. 2009; 14: 20-24
        • Langton A.K.
        • Sherratt M.J.
        • Griffiths C.E.M.
        • Watson R.E.B.
        A new wrinkle on old skin: the role of elastic fibres in skin ageing.
        Int. J. Cosmet. Sci. 2010; 32: 330-339
        • Meshel A.S.
        • Wei Q.
        • Adelstein R.S.
        • Sheetz M.P.
        Basic mechanism of three-dimensional collagen fibre transport by fibroblasts.
        Nat. Cell Biol. 2005; 7: 157-164
        • Kalson N.S.
        • Starborg T.
        • Lu Y.
        • Mironov A.
        • Humphries S.M.
        • Holmes D.F.
        • et al.
        Nonmuscle myosin II powered transport of newly formed collagen fibrils at the plasma membrane.
        Proc. Natl. Acad. Sci. U.S.A. 2013; 110: E4743-E4752
        • Milewicz D.M.
        • Pyeritz R.E.
        • Crawford E.S.
        • Byers P.H.
        Marfan syndrome: defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts.
        J. Clin. Invest. 1992; 89: 79-86
        • Wallis D.D.
        • Putnam E.A.
        • Cretoiu J.S.
        • Carmical S.G.
        • Cao S.N.
        • Thomas G.
        • et al.
        Profibrillin-1 maturation by human dermal fibroblasts: proteolytic processing and molecular chaperones.
        J. Cell Biochem. 2003; 90: 641-652
        • Bi G.Q.
        • Morris R.L.
        • Liao G.
        • Alderton J.M.
        • Scholey J.M.
        • Steinhardt R.A.
        Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis.
        J. Cell Biol. 1997; 138: 999-1008
        • Kull F.J.
        • Endow S.A.
        Force generation by kinesin and myosin cytoskeletal motor proteins.
        J. Cell Sci. 2013; 126: 9-19
        • Togo T.
        • Steinhardt R.A.
        Nonmuscle myosin IIA and IIB have distinct functions in the exocytosis-dependent process of cell membrane repair.
        Mol. Biol. Cell. 2004; 15: 688-695
        • Gupta V.
        • Palmer K.J.
        • Spence P.
        • Hudson A.
        • Stephens D.J.
        Kinesin-1 (uKHC/KIF5B) is required for bidirectional motility of ER exit sites and efficient ER-to-Golgi transport.
        Traffic. 2008; 9: 1850-1866
        • Penefsky H.S.
        Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis.
        Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 1589-1593
        • Bickers D.R.
        • Athar M.
        Oxidative stress in the pathogenesis of skin disease.
        J. Invest. Dermatol. 2006; 126: 2565-2575
        • Muthusamy V.
        • Piva T.J.
        The UV response of the skin: a review of the MAPK, NFkappaB and TNFalpha signal transduction pathways.
        Arch. Dermatol. Res. 2010; 302: 5-17
        • Watson R.E.
        • Griffiths C.E.
        • Craven N.M.
        • Shuttleworth C.A.
        • Kielty C.M.
        Fibrillin-rich microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction.
        J. Invest. Dermatol. 1999; 112: 782-787
        • He C.S.
        • Wilhelm S.M.
        • Pentland A.P.
        • Marmer B.L.
        • Grant G.A.
        • Eisen A.Z.
        • et al.
        Tissue cooperation in a proteolytic cascade activating human interstitial collagenase.
        Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 2632-2636
        • Wong W.R.
        • Kossodo S.
        • Kochevar I.E.
        Influence of cytokines on matrix metalloproteinases produced by fibroblasts cultured in monolayer and collagen gels.
        J. Formos. Med. Assoc. 2001; 100: 377-382
        • Grant G.A.
        • Eisen A.Z.
        • Marmer B.L.
        • Roswit W.T.
        • Goldberg G.I.
        The activation of human skin fibroblast procollagenase. Sequence identification of the major conversion products.
        J. Biol. Chem. 1987; 262: 5886-5889
        • Sonoki A.
        • Okano Y.
        • Yoshitake Y.
        Dermal fibroblasts can activate matrix metalloproteinase-1 independent of keratinocytes via plasmin in a 3D collagen model.
        Exp. Dermatol. 2018; 27: 520-525
        • Brookes P.S.
        • Yoon Y.
        • Robotham J.L.
        • Anders M.W.
        • Sheu S.S.
        Calcium, ATP, and ROS: a mitochondrial love-hate triangle.
        Am. J. Physiol. Cell Physiol. 2004; 287: C817-C833
        • Wang S.F.
        • Chen M.S.
        • Chou Y.C.
        • Ueng Y.F.
        • Yin P.H.
        • Yeh T.S.
        • et al.
        Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway.
        Oncotarget. 2016; 7: 74132-74151
        • Djavaheri-Mergny M.
        • Marsac C.
        • Mazière C.
        • Santus R.
        • Michel L.
        • Dubertret L.
        • et al.
        UV-A irradiation induces a decrease in the mitochondrial respiratory activity of human NCTC 2544 keratinocytes.
        Free Radic. Res. 2001; 34: 583-594
        • Rovito H.A.
        J.E. Oblong, Nicotinamide preferentially protects glycolysis in dermal fibroblasts under oxidative stress conditions.
        Br. J. Dermatol. 2013; 169: 15-24
        • Kim S.H.
        • Park Y.Y.
        • Yoo Y.S.
        • Cho H.
        Self-clearance mechanism of mitochondrial E3 ligase MARCH5 contributes to mitochondria quality control.
        Febs. J. 2016; 283: 294-304