Advertisement
Research Article|Articles in Press

Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway

  • Author Footnotes
    1 Di Wang and Shuheng Li contributed equally to this work.
    Di Wang
    Footnotes
    1 Di Wang and Shuheng Li contributed equally to this work.
    Affiliations
    The First School of Clinical Medicine, Southern Medical University, Guangzhou, China

    Dermatology Hospital, Southern Medical University, Guangzhou, China
    Search for articles by this author
  • Author Footnotes
    1 Di Wang and Shuheng Li contributed equally to this work.
    Shuheng Li
    Footnotes
    1 Di Wang and Shuheng Li contributed equally to this work.
    Affiliations
    The First School of Clinical Medicine, Southern Medical University, Guangzhou, China

    Dermatology Hospital, Southern Medical University, Guangzhou, China
    Search for articles by this author
  • Yishan Chen
    Affiliations
    The First School of Clinical Medicine, Southern Medical University, Guangzhou, China

    Dermatology Hospital, Southern Medical University, Guangzhou, China
    Search for articles by this author
  • Jialiang Luo
    Affiliations
    Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
    Search for articles by this author
  • Lei Li
    Affiliations
    Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
    Search for articles by this author
  • Bocheng Wang
    Affiliations
    The First School of Clinical Medicine, Southern Medical University, Guangzhou, China

    Dermatology Hospital, Southern Medical University, Guangzhou, China
    Search for articles by this author
  • Yingping Xu
    Affiliations
    Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
    Search for articles by this author
  • Yunsheng Liang
    Correspondence
    Correspondence to: Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
    Affiliations
    Dermatology Hospital, Southern Medical University, Guangzhou, China
    Search for articles by this author
  • Author Footnotes
    1 Di Wang and Shuheng Li contributed equally to this work.
Published:February 14, 2023DOI:https://doi.org/10.1016/j.jdermsci.2023.02.002

      Highlights

      • STS treatment can inhibit melanoma cell proliferation, viability, and EMT process.
      • STS inhibits melanoma development via releasing H2S.
      • STS inhibits the EMT process via downregulating the activity of the Wnt/β-catenin signaling pathway.

      Abstract

      Background

      Melanoma is the most common form of skin cancer. Given its high metastasis and high recurrence, its therapies are constantly updated.

      Objective

      The study aims to prove the efficacy of sodium thiosulfate (STS), an antidote to cyanide or nitroprusside poisoning, in melanoma treatment.

      Methods

      We tested the effect of STS by culturing melanoma cells (B16 and A375) in vitro and establishing melanoma mouse models in vivo. The proliferation and viability of melanoma cells were measured by the CCK-8 test, cell cycle assay, apoptosis analysis, wound healing assay, and transwell migration assay. The expression of apoptosis-related molecules, epithelial-mesenchymal transition (EMT)-associated molecules, and the Wnt/β-catenin signaling pathway-related molecules were determined by Western blotting and immunofluorescence.

      Results

      The high metastasis of melanoma is considered to be linked to the EMT process. The scratch assay using B16 and A375 cells also showed that STS could inhibit the EMT process of melanoma. We demonstrated that STS inhibited the proliferation, viability, and EMT process of melanoma by releasing H2S. STS-mediated weakening of cell migration was related to the inhibition of the Wnt/β-catenin signaling pathway. Mechanistically, we defined that STS inhibited the EMT process via the Wnt/β-catenin signaling pathway.

      Conclusions

      These results suggest that the negative effect of STS on melanoma development is mediated by the reduction of EMT via the regulation of the Wnt/β-catenin signaling pathway, which provides a new clue to treating melanoma.

      Abbreviations:

      DMEM (Dulbecco's modified Eagle's medium), RPMI 1640 (Roswell Park Memorial Institute 1640), FBS (fetal bovine serum), PVDF (polyvinylidene fluoride), TBST (Tris Buffered Saline Tween), EMT (Epithelial-to-mesenchymal transition), PBS (phosphate-buffered saline), STS (sodium thiosulfate), H2S (hydrogen sulfide), DAPI (4',6-Diamidino-2'-phenylindole)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mishra H.
        • Mishra P.K.
        • Ekielski A.
        • Jaggi M.
        • Iqbal Z.
        • Talegaonkar S.
        Melanoma treatment: from conventional to nanotechnology.
        J. Cancer Res Clin. Oncol. 2018; 144: 2283-2302
        • Mantas D.
        • Tsaparas P.
        • Charalampoudis P.
        • Gogas H.
        • Kouraklis G.
        Emergency surgery for metastatic melanoma.
        Int J. Surg. Oncol. 2014; 987170
        • Guo X.
        • Fang Y.
        • Guo C.F.
        • Jia Q.
        • Chi Z.D.
        • Li J.M.
        • et al.
        Qa-1b functions as an oncogenic factor in mouse melanoma cells.
        J. Dermatol. Sci. 2022; 105: 159-169
        • Lian C.G.
        • Xu Y.F.
        • Ceol C.
        • Wu F.Z.
        • Larson A.
        • Dresser K.
        • et al.
        Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma.
        Cell. 2012; 150: 1135-1146
        • Garbe C.
        • Eigentler T.K.
        • Keilholz U.
        • Hauschild A.
        • Kirkwood J.M.
        Systematic review of medical treatment in melanoma: Current status and future prospects.
        Oncologist. 2011; 16: 5-24
        • Bajetta E.
        • Vecchio M.D.
        • Marty C.B.
        • Vitali M.
        • Buzzoni R.
        • Rixe O.
        • et al.
        Metastatic melanoma: Chemotherapy.
        Semin Oncol. 2002; 29: 427-445
        • Yan T.T.
        • Jiang X.P.
        • Guo X.W.
        • Chen W.
        • Tang D.
        • Zhang J.H.
        • et al.
        Electric field-induced suppression of PTEN drives epithelial-to-mesenchymal transition via mTORC1 activation.
        J. Dermatol. Sci. 2017; 85: 96-105
        • Li X.Z.
        • Zhang C.
        • Yuan Y.W.
        • Wang Y.M.
        • Lu S.
        • Zhou Z.M.
        • et al.
        Downregulation of ARMC8 promotes tumorigenesis through activating Wnt/β-catenin pathway and EMT in cutaneous squamous cell carcinomas.
        J. Dermatol. Sci. 2021; 102: 184-192
        • Yang J.
        • Antin P.
        • Berx G.
        • Blanpain C.
        • Brabletz T.
        • Bronner M.
        • et al.
        EMT International Association (TEMTIA), Guidelines and definitions for research on epithelial-mesenchymal transition.
        Nat. Rev. Mol. Cell Biol. 2020; 21: 341-352
        • Thiery J.P.
        • Acloque H.
        • Huang R.Y.J.
        • Nieto M.A.
        Epithelial-mesenchymal transitions in development and disease.
        Cell. 2009; 139: 871-890
        • Pedri D.
        • Karras P.
        • Landeloos E.
        • Marine J.C.
        • Rambow F.
        Epithelial-to-mesenchymal-like transition events in melanoma.
        FEBS J. 2022; 289: 1352-1368
        • Hodorogea A.
        • Calinescu A.
        • Antohe M.
        • Balaban M.
        • Nedelcu R.L.
        • Turcu G.
        • et al.
        Epithelial-Mesenchymal Transition in Skin Cancers: A Review.
        Anal. Cell Pathol. 2019; 3851576
        • Sheng L.
        • Wei R.
        Long Non-Coding RNA-CASC15 Promotes Cell Proliferation, Migration, and Invasion by Activating Wnt/β-Catenin Signaling Pathway in Melanoma.
        Pathobiology. 2020; 87: 20-29
        • Kalluri R.
        • Weinberg R.A.
        The basics of epithelial-mesenchymal transition.
        J. Clin. Invest. 2009; 119: 1420-1428
        • Sinnberg T.
        • Levesque M.P.
        • Krochmann J.
        • Cheng P.F.
        • Ikenberg K.
        • Torres F.M.
        • et al.
        Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype.
        Mol. Cancer. 2018; 17: 59
        • Niehrs C.
        The complex world of WNT receptor signalling.
        Nat. Rev. Mol. Cell Biol. 2012; 13: 767-779
        • Fodde R.
        • Brabletz T.
        Wnt/beta-catenin signaling in cancer stemness and malignant behavior.
        Curr. Opin. Cell Biol. 2007; 19: 150-158
        • Malanchi I.
        • Peinado H.
        • Kassen D.
        • Hussenet T.
        • Metzger D.
        • Chambon P.
        • et al.
        Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling.
        Nature. 2008; 452: 650-653
        • Li V.S.W.
        • Ng S.S.
        • Boersema P.J.
        • Low T.Y.
        • Karthaus W.R.
        • Gerlach J.P.
        • et al.
        Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex.
        Cell. 2012; 149: 1245-1256
        • Park S.Y.
        • Lee Y.K.
        • Lee W.S.
        • Park O.J.
        • Kim Y.M.
        The involvement of AMPK/GSK3-beta signals in the control of metastasis and proliferation in hepato-carcinoma cells treated with anthocyanins extracted from Korea wild berry Meoru.
        BMC Complement Alter. Med. 2014; 14: 109
        • Valenta T.
        • Hausmann G.
        • Basler K.
        The many faces and functions of β-catenin.
        EMBO J. 2012; 31: 2714-2736
        • Thiery J.P.
        Epithelial-mesenchymal transitions in tumour progression.
        Nat. Rev. Cancer. 2002; 2: 442-454
        • Xu M.T.
        • Zhang L.L.
        • Song S.
        • Pan L.L.
        • Arslan I.M.
        • Chen Y.
        • et al.
        Hydrogen sulfide: Recent progress and perspectives for the treatment of dermatological diseases.
        J. Adv. Res. 2020; 27: 11-17
        • Cai F.F.
        • Xu H.R.
        • Cao N.N.
        • Zhang X.Y.
        • Liu J.
        • Lu Y.Y.
        • et al.
        ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD.
        Cell Death Dis. 2020; 11: 33
        • Zakharov S.
        • Vaneckova M.
        • Seidl Z.
        • Diblik P.
        • Kuthan P.
        • Urban P.
        • et al.
        Successful Use of Hydroxocobalamin and Sodium Thiosulfate in Acute Cyanide Poisoning: A Case Report with Follow-up.
        Basic Clin. Pharm. Toxicol. 2015; 117: 209-212
        • Rijswijk R.E.
        • Hoekman K.
        • Burger C.W.
        • Verheijen R.H.
        • Vermorken J.B.
        Experience with intraperitoneal cisplatin and etoposide and i.v. sodium thiosulphate protection in ovarian cancer patients with either pathologically complete response or minimal residual disease.
        Ann. Oncol. 1997; 8: 1235-1241
        • Sakaguchi M.
        • Marutani E.
        • Shin H.S.
        • Chen W.
        • Hanaoka K.
        • Xian M.
        • et al.
        Sodium thiosulfate attenuates acute lung injury in mice.
        Anesthesiology. 2014; 121: 1248-1257
        • Olson K.R.
        • Deleon E.R.
        • Gao Y.
        • Hurley K.
        • Sadauskas V.
        • Batz C.
        • et al.
        Thiosulfate: A readily accessible source of hydrogen sulfide in oxygen sensing.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 305: R592-R603
        • Snijder P.M.
        • Frenay A.R.
        • Boer R.A.D.
        • Pasch A.
        • Hillebrands J.L.
        • Leuvenink H.G.D.
        • et al.
        Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats.
        Br. J. Pharm. 2015; 172: 1494-1504
        • Xiao Q.
        • Ying J.Y.
        • Qiao Z.H.
        • Yang Y.W.
        • Dai X.X.
        • Xu Z.Y.
        • et al.
        Exogenous hydrogen sulfide inhibits human melanoma cell development via suppression of the PI3K/AKT/ mTOR pathway.
        J. Dermatol. Sci. 2020; 98: 26-34
        • Wang D.
        • Lin L.
        • Lei K.
        • Zeng J.Q.
        • Luo J.L.
        • Yin Y.
        • et al.
        Vitamin D3 analogue facilitates epithelial wound healing through promoting epithelial-mesenchymal transition via the Hippo pathway.
        J. Dermatol. Sci. 2020; 100: 120-128
        • Chahinian A.P.
        • Norton L.
        • Holland J.F.
        • Szrajer L.
        • Hart R.D.
        Experimental and clinical activity of mitomycin C and cis-diamminedichloroplatinum in malignant mesothelioma.
        Cancer Res. 1984; 44: 1688-1692
        • Wu D.Q.
        • Pan W.J.
        GSK3: A multifaceted kinase in Wnt signaling.
        Trends Biochem Sci. 2010; 35: 161-168
        • Niehrs C.
        The complex world of WNT receptor signalling.
        Nat. Rev. Mol. Cell Biol. 2012; 13: 767-779
        • Yu R.
        • Jin L.B.
        • Li F.F.
        • Fujimoto M.
        • Wei Q.
        • Lin Z.H.
        • et al.
        Dihydroartemisinin inhibits melanoma by regulating CTL/Treg anti-tumor immunity and STAT3-mediated apoptosis via IL-10 dependent manner.
        J. Dermatol. Sci. 2020; 99: 193-202
        • Davis L.E.
        • Shalin S.C.
        • Tackett A.J.
        Current state of melanoma diagnosis and treatment.
        Cancer Biol. Ther. 2019; 20: 1366-1379
        • Martínez M.D.
        • Jardón L.B.
        • Alonso L.
        • Ploch L.K.
        • Hernando E.
        • Teixidó J.
        miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma.
        Cancer Res. 2018; 78: 1017-1030
        • Cicco P.D.
        • Ercolano G.
        • Rubino V.
        • Terrazzano G.
        • Ruggiero G.
        • Cirino G.
        • et al.
        Modulation of the functions of myeloid-derived suppressor cells: A new strategy of hydrogen sulfide anti-cancer effects.
        Br. J. Pharm. 2020; 177: 884-897
        • Wu D.D.
        • Li J.M.
        • Zhang Q.Q.
        • Tian W.K.
        • Zhong P.Y.
        • Liu Z.G.
        • et al.
        Exogenous hydrogen sulfide regulates the growth of human thyroid carcinoma cells.
        Oxid. Med Cell Longev. 2019; 6927298
        • Macabrey D.
        • Longchamp A.
        • MacArthur M.R.
        • Lambelet M.
        • Urfer S.
        • Deglise S.
        • et al.
        Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation.
        EBioMedicine. 2022; 78103954
        • Zhang M.Y.
        • Dugbartey G.J.
        • Juriasingani S.
        • Sener A.
        Hydrogen sulfide metabolite, sodium thiosulfate: clinical applications and underlying molecular mechanisms.
        Int J. Mol. Sci. 2021; 22: 6452
        • Vandamme N.
        • Berx G.
        Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.
        Front Oncol. 2014; 4: 352
        • Bai Y.W.
        • Ye M.J.
        • Yang D.L.
        • Yu M.P.
        • Zhou C.F.
        • Shen T.
        Hydrogen sulfide attenuates paraquat-induced epithelial-mesenchymal transition of human alveolar epithelial cells through regulating transforming growth factor-β1/Smad2/3 signaling pathway.
        J. Appl. Toxicol. 2019; 39: 432-440
        • Ye M.J.
        • Yu M.P.
        • Yang D.L.
        • Li J.H.
        • Wang H.P.
        • Chen F.P.
        • et al.
        Exogenous hydrogen sulfide donor NaHS alleviates nickel-induced epithelial-mesenchymal transition and the migration of A549 cells by regulating TGF-β1/Smad2/Smad3 signaling.
        Ecotoxicol. Environ. Saf. 2020; 195110464
        • Li Y.K.
        • Zhang F.Q.
        • Yang D.H.
        Comprehensive assessment and meta-analysis of the association between CTNNB1 polymorphisms and cancer risk.
        Biosci. Rep. 2017; 37 (BSR20171121)
        • DiMeo T.A.
        • Anderson K.
        • Phadke P.
        • Fan C.
        • Perou C.M.
        • Naber S.
        • et al.
        A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer.
        Cancer Res. 2009; 69: 5364-5373
        • Seth R.
        • Messersmith H.
        • Kaur V.
        • Kirkwood J.M.
        • Kudchadkar R.
        • McQuade J.L.
        • et al.
        Systemic Therapy for Melanoma: ASCO Guideline.
        J. Clin. Oncol. 2020; 38: 3947-3970
        • Kumar D.
        • Gorain M.
        • Kundu G.
        • Kundu G.C.
        Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma.
        Mol. Cancer. 2017; 16: 7