Advertisement
Regular paper| Volume 21, ISSUE 2, P113-126, October 1999

Studies on specificity of peptidylarginine deiminase reactions using an immunochemical probe that recognizes an enzymatically deiminated partial sequence of mouse keratin K1

      Abstract

      Citrulline residues are detected in keratins and filaggrin in the cornified layers of mammalian epidermis. Such citrulline residues are formed by the enzymatic deimination of arginine residues by peptidylarginine deiminases (EC 3.5.3.15). Major deiminated keratins are derived from keratin K1. Two arginine residues identified as preferred deimination sites in mouse K1 are located in its V subdomains. To develop an immunochemical probe which recognizes the deiminated peptide sequence specifically, we enzymatically deiminated an undecapeptide corresponding to the deiminated peptide sequence identified in the V2 subdomain for immunizing rabbits. An IgG fraction obtained from the antiserum was affinity-purified using an immobilized peptide column. The affinity-purified IgG showed high specificity towards partially degraded keratin K1 obtained from the cornified layer of 3-day-old mouse epidermis. It also yielded intense signals of unidentified minor components localized in the cornified layers of late embryonic and early postnatal mouse epidermis. Comparative studies using different types of the enzymes suggested that peptidylarginine deiminase type I acted on the arginine residue in the V2 subdomain of keratin K1 more readily than peptidylarginine deiminase type II. The data are discussed in conjunction with possible factors influencing the specificity of the enzyme reaction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Dermatological Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rogers G.E.
        • Harding H.W.J.
        • Llewellyn-Smith I.J.
        The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor.
        Biochim. Biophys. Acta. 1977; 495: 159-175
        • Kubilus J.
        • Waitkus R.W.
        • Baden H.P.
        Partial purification and specificity of an arginine-converting enzyme from bovine epidermis.
        Biochim. Biophys. Acta. 1980; 615: 246-251
        • Fujisaki M.
        • Sugawara K.
        Properties of peptidylarginine deiminase from the epidermis of newborn rat.
        J. Biochem. (Tokyo). 1981; 89: 257-263
      1. Rothnagel JA, Rogers GE. Citrulline in proteins from the enzymatic deimination of arginine residues. In: Wald F, Moldave K, editors, Methods in Enzymology, vol. 107, Orlando, FL: Academic Press, 1984:624–631.

        • Watanabe K.
        • Akiyama K.
        • Hikichi K.
        • Ohtsuka R.
        • Okuyama A.
        • Senshu T.
        Combined biochemical and immunocytochemical comparison of peptidylarginine deiminases present in various tissues.
        Biochim. Biophys. Acta. 1988; 966: 375-383
        • Takahara H.
        • Tsuchida M.
        • Kusubata M.
        • Akutsu K.
        • Tagami S.
        • Sugawara K.
        Peptidylarginine deiminase of the mouse. Distribution, properties, and immunocytochemical localization.
        J. Biol. Chem. 1989; 264: 13361-13368
        • Senshu T.
        • Akiyama K.
        • Kan S.
        • Asaga H.
        • Ishigami A.
        • Manabe M.
        Detection of deiminated proteins in rat skin: probing with a monospecific antibody after modification of citrulline residues.
        J. Invest. Dermatol. 1995; 105: 163-169
        • Senshu T.
        • Kan S.
        • Ogawa H.
        • Manabe M.
        • Asaga H.
        Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis.
        Biochem. Biophys. Res. Commun. 1996; 225: 712-719
        • Kan S.
        • Asaga H.
        • Senshu T.
        Detection of several families of deiminated proteins derived from filaggrin and keratins in guinea pig skin.
        Zool. Sci. 1996; 13: 673-678
      2. Akiyama K, Senshu T. Dynamic aspects of protein deimination in developing mouse epidermis. Exp Dermatol (in press).

      3. Senshu T, Akiyama K, Nomura K. Identification of citrulline residues in the V subdomains of keratin K1 derived from the cornified layer of newborn mouse epidermis. Exp Dermatol (in press).

        • Steinert P.M.
        • Parry D.A.D.
        • Idler W.W.
        • Johnson L.D.
        • Steven A.C.
        • Roop D.R.
        Amino acid sequences of mouse and human epidermal type II keratins of Mr 67 000 provide a systemic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits.
        J. Biol. Chem. 1985; 260: 7142-7149
        • Terakawa H.
        • Takahara H.
        • Sugawara K.
        Three types of peptidylarginine deiminase: characterization and tissue distribution.
        J. Biochem. (Tokyo). 1991; 110: 661-666
        • Watanabe K.
        • Senshu T.
        Isolation and characterization of cDNA clones encoding rat skeletal muscle peptidylarginine deiminase.
        J. Biol. Chem. 1989; 264: 15255-15260
        • Tsuchida M.
        • Takahara H.
        • Minami N.
        • Arai T.
        • Kobayashi Y.
        • Tsujimoto H.
        • Fukazawa C.
        • Sugawara K.
        cDNA nucleotide sequence and primary structure of mouse uterine peptidylarginine deiminase. Detection of a 3′-untranslated nucleotide sequence common to the mRNA of transiently expressed genes and rapid turnover of this enzyme’s mRNA in the estrous cycle.
        Eur. J. Biochem. 1993; 215: 677-685
        • Rogers G.
        • Winter B.
        • McLaughlan C.
        • Powell B.
        • Nesci T.
        Peptidylarginine deiminase of the hair follicle: characterization, localization, and function in keratinizing tissues.
        J. Invest. Dermatol. 1997; 108: 700-707
        • Nishijyo T.
        • Kawada A.
        • Kanno T.
        • Shiraiwa M.
        • Takahara H.
        Isolation and molecular cloning of epidermal- and hair follicle-specific peptidylarginine deiminase (type III) from rat.
        J. Biochem. (Tokyo). 1997; 121: 868-875
        • Ishigami A.
        • Ohsawa T.
        • Watanabe K.
        • Senshu T.
        All-trans retinoic acid increases peptidylarginine deiminases in a newborn rat keratinocyte cell line.
        Biochem. Biophys. Res. Commun. 1996; 223: 299-303
        • Ishigami A.
        • Kuramoto M.
        • Yamada M.
        • Watanabe K.
        • Senshu T.
        Molecular cloning of two novel types of peptidylarginine deiminase cDNAs from retinoic acid-treated culture of a newborn rat keratinocyte cell line.
        FEBS. Lett. 1998; 433: 113-118
        • Yamakoshi A.
        • Ono H.
        • Nishijyo T.
        • Shiraiwa M.
        • Takahara H.
        Cloning of cDNA encoding a novel isoform (type IV) of peptidylarginine deiminase from rat epidermis.
        Biochim. Biophys. Acta. 1998; 1386: 227-232
        • Johnson L.D.
        • Idler W.W.
        • Zou X.M.
        • Roop D.R.
        • Steinert P.M.
        Structure of a gene for the human epidermal 67-kDa keratin.
        Proc. Natl. Acad. Sci. USA. 1985; 82: 1896-1900
        • Steinert P.M.
        • Parry D.A.
        • Racoosin E.L.
        • Idler W.W.
        • Steven A.C.
        • Trus B.L.
        • Roop D.R.
        The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60 000 Da: analysis of sequence differences between type I and type II keratins.
        Proc. Natl. Acad. Sci. USA. 1984; 81: 5709-5713
        • Semat A.
        • Vasseur M.
        • Maillet L.
        • Brulet P.
        • Darmon Y.M.
        Sequence analysis of murine cytokeratin endo A (no. 8) cDNA. Evidence for mRNA species initiated upstream of the normal 5′ end in PCC4 cells.
        Differentiation. 1988; 37: 40-46
        • Myers D.E.
        • Uckun F.M.
        • Swaim S.E.
        • Vallera D.A.
        The effects of aromatic and aliphatic maleimide crosslinkers on anti-CD5 ricin immunotoxins.
        J. Immunol. Methods. 1989; 121: 129-142
        • Boyde T.R.C.
        • Rahmatullah M.
        Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime.
        Anal. Biochem. 1980; 107: 424-431
        • Sun T.-T.
        • Green H.
        Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation.
        J. Biol. Chem. 1978; 253: 2053-2060
        • Steinert P.M.
        • Idler W.W.
        Postsynthetic modifications of mammalian epidermal α-keratin.
        Biochemistry. 1979; 18: 5664-5669
        • Bowden P.E.
        • Quinlan R.A.
        • Breitkreutz D.
        • Fusenig N.E.
        Proteolytic modifications of acidic and basic keratins during terminal differentiation in mouse and human epidermis.
        Eur. J. Biochem. 1984; 142: 29-36
        • Friedman M.
        • Krull L.H.
        • Cavins J.F.
        The chromatographic determination of cystine and cysteine residues in proteins as S-β-(4-pyridylethyl)cysteine.
        J. Biol. Chem. 1970; 245: 3868-3871
        • Laemmli U.K.
        Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
        Nature. 1970; 227: 680-685
        • O’Farrell P.Z.
        • Goodman H.M.
        • O’Farrell P.H.
        High resolution two-dimensional electrophoresis of basic as well as acidic proteins.
        Cell. 1977; 12: 1133-1142
        • Senshu T.
        • Sato T.
        • Inoue T.
        • Akiyama K.
        • Asaga H.
        Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane.
        Anal. Biochem. 1992; 203: 94-100
        • Schägger H.
        • von Jagow G.
        Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.
        Anal. Biochem. 1987; 166: 368-379
        • Schweizer J.
        • Winter H.
        Keratin polypeptide analysis in fetal and in terminally differentiating newborn mouse epidermis.
        Differentiation. 1982; 22: 19-24
        • Herzog F.
        • Winter H.
        • Schweizer J.
        The large type II 70-kDa keratin of mouse epidermis is the ortholog of human keratin K2e.
        J. Invest. Dermatol. 1994; 102: 165-170
        • Tarcsa E.
        • Marekov L.N.
        • Mei G.
        • Melino G.
        • Lee S.C.
        • Steinert P.M.
        Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin.
        J. Biol. Chem. 1996; 271: 30709-30716
      4. Steinert PM, Freedberg M. Molecular and cellular biology of keratins. In: Goldsmith LA, editor, Physiology, biochemistry, and molecular biology of the skin. New York: Oxford University Press, 1991:113–147.

        • Steinert P.M.
        Structure, function, and dynamics of keratin intermediate filaments.
        J. Invest. Dermatol. 1993; 100: 729-734
        • Inagaki M.
        • Takahara H.
        • Nishi Y.
        • Sugawara K.
        • Sato C.
        Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain.
        J. Biol. Chem. 1989; 264: 18119-18127
        • Kartasova T.
        • Roop D.R.
        • Holbrook K.A.
        • Yuspa S.H.
        Mouse differentiation-specific keratins 1 and 10 require a preexisting keratin scaffold to form a filament network.
        J. Cell. Biol. 1993; 120: 1251-1261
        • Mack J.W.
        • Steven A.C.
        • Steinert P.M.
        The mechanism of interaction of filaggrin with intermediate filaments. The ionic zipper hypothesis.
        J. Mol. Biol. 1993; 232: 50-66
        • Steinert P.M.
        • Mack J.W.
        • Korge B.P.
        • Gan Q.
        • Haynes S.R.
        • Steven A.C.
        Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins.
        Int. J. Biol. Macromol. 1991; 13: 130-139
        • Kouklis P.D.
        • Hutton E.
        • Fuchs E.
        Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins.
        J. Cell. Biol. 1994; 127: 1049-1060
        • Lee C.G.
        • Eki T.
        • Okumura K.
        • daCosta Soares V.
        • Hurwitz J.
        Molecular analysis of the cDNA and genomic DNA encoding mouse RNA helicase A.
        Genomics. 1998; 47: 365-371
        • Bourbon H.M.
        • Lapeyre B.
        • Amalric F.
        Structure of the mouse nucleolin gene. The complete sequence reveals that each RNA binding domain is encoded by two independent exons.
        J. Mol. Biol. 1988; 200: 627-638
        • Aris J.P.
        • Blobel G.
        cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognized by autoimmune antisera.
        Proc. Natl. Acad. Sci. USA. 1991; 88: 931-935
        • Jansen R.P.
        • Hurt E.C.
        • Kern H.
        • Lehtonen H.
        • Carmo-Fonseca M.
        • Lapeyre B.
        • Tollervey D.
        Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast.
        J. Cell. Biol. 1991; 113: 715-729
        • Turley S.J.
        • Tan E.M.
        • Pollard K.M.
        Molecular cloning and sequence analysis of U3 snoRNA-associated mouse fibrillarin.
        Biochim. Biophys. Acta. 1993; 1216: 119-122
        • Plougastel B.
        • Mattei M.G.
        • Thomas G.
        • Delattre O.
        Cloning and chromosome localization of the mouse Ews gene.
        Genomics. 1994; 23: 278-281
        • Rieger M.
        • Franke W.W.
        Identification of an orthologous mammalian cytokeratin gene. High degree of intron sequence conservation during evolution of human cytokeratin 10.
        J. Mol. Biol. 1988; 204: 841-856